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ABSTRACT
Trust is one of the necessary factors for building a successful human-
robot interaction (HRI). This paper investigated how human trust
in robots differs across HRI scenarios in two cultures. We conducted
two studies in two countries: Saudi Arabia (study 1) and the United
Kingdom (study 2). Each study presented three HRI scenarios: a
dog robot guiding people with sight impairments, a teleoperated
robot in healthcare, and a manufacturing robot. Study 1 shows that
participants’ trust perception score (TPS) was significantly differ-
ent across the three scenarios. However, Study 2 results show a
slightly significant variation in TPS across the scenarios. We also
found that the relevance of trust for a given task is an indicator of
a participant’s trust. Furthermore, the findings showed that trust
scores or factors affecting users’ trust vary across cultures. The
findings identified novel factors that might affect human trust, such
as controllability, usability and risk. The findings direct the HRI
community to consider a dynamic and evolving design for mod-
elling human-robot trust because factors affecting humans’ trust
are evolving and will vary across different settings and cultures.

CCS CONCEPTS
• Human-centered computing → User studies; • Computer sys-
tems organization → Robotics.
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1 INTRODUCTION
In recent years, robots have been programmed to support and
assist humans in various environments as nursing assistants in
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healthcare [25], guiding blind people indoors and outdoors [29],
manufacturing operations, and military operations [9]. Human
factors such as trustworthiness and reliance on robots are crucial
to ensure the successful integration of robots in these settings. The
absence or over-reliance on robots can override such systems, and
humans may lose the opportunity to benefit from them. Therefore,
understanding the concept of trust and investigating the factors
influencing trust is needed for a successful HRI.

Hancock et al. [17, 18] analysed the broad range of factors that
affect human’s trust in robots during human-robot interaction (HRI)
and contributed a model for human-robot trust based on their anal-
ysis. Recent empirical findings have shown that factors affecting
human trust in robots may vary across settings due to different
degree of risk and vulnerability [1, 35, 42], elements that were not
found in Hancock’s analysis [17]. Similarly, we see limited studies
attempting to understand how one factor affecting trust in robots
in a given setting presenting a certain degree of risk may not be
relevant for another. Considering this, we understand it is not prob-
able to generalize “factors” affecting trust as they may differ due to
the dynamic nature of humans’ trust in robots across settings.

In addition to different HRI settings, an individual’s cultural back-
ground also influences their trust in robots [13, 17, 37]. Hancock
et al. [17] highlighted that cultural factors influence human trust
in robots. However, the studies discussed comprised individuals
from the Asian, United States and European cultures [13, 27]. There
is a lack of studies considering the Arab culture in the context of
factors affecting trust in robots. In addition, many attributes of
culture such as communication, skills (psychomotor and cognitive),
attitudes, values, beliefs, expectations, cognition, conventional ac-
tions, material artefacts and technological know-how have not to
our knowledge been explicitly considered [10].

The work described in this paper attempts to reflect on these two
identified gaps and investigates the following research questions.
RQ1) Does individuals’ trust perception of a robot vary across HRI
settings? RQ2) Do people from different cultural backgrounds show
differences in factors affecting trust and do their perception of trust
vary across diverse settings? RQ3) What are the “new” or unidenti-
fied factors affecting user trust in robots across diverse settings? In
particular, all RQs consider settings that present varying degrees
of risk and vulnerability. To investigate these RQs, we conducted
two studies that explored the factors affecting trust and variance
of trust across three scenarios: guiding blind people, teleoperated
diagnoses in healthcare, and a manufacturing/assembly scenario.
We conducted studies in Saudi Arabia (KSA) and the United King-
dom (UK). All of the three scenarios were different in the nature
of task, interaction type, and degree of risk. We selected these two
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countries because limited studies can be found where Arab cul-
ture is compared to European/Western culture in the context of
studying trust in robots [17]. Furthermore, the use of robotics is
among the top government strategies in different domains such as
manufacturing, defence, and nuclear for the near future of the UK
[28] and KSA [21]. The novel contributions of this paper are:

• We show that not all factors affecting trust listed in the
Hancock et al. [17] model are relevant or essential across
various scenarios and cultures.

• We show that factors affecting trust (such as controllability,
familiarity, usability and others (see Table 3 & Figure 2)) vary
across scenarios in both studies and also varied across two
different cultures (KSA and the UK).

• We show that the trust perception and trust relevance scores
varied significantly across the two different cultures. How-
ever, trust perception did not vary across scenarios in the
study conducted in the UK.

• We identified new factors (controllability, familiarity, and
risk) in addition to ones identified by [17] in both studies.

2 RELATEDWORK
2.1 Trust and factors affecting trust in robots
Trust is a multidimensional concept, and it has been widely re-
searched in several disciplines, such as sociology, psychology, cog-
nitive science, and human-computer interaction [3]. The definition
of trust may vary based on the robot’s application and domain
[23]. However, Abbass et al. provided a comprehensive definition
of trust that is used widely in HRI studies as a “multidimensional
psychological attitude involving beliefs and expectations about the
trustee’s trustworthiness derived from experience and interactions
with the trustee in situations involving uncertainty and risk.” [1].
Because a trustee’s trustworthiness and the environment may differ
in each HRI scenario, this definition of trust can be applied to our
study. This definition shows that psychological attitudes (e.g., ex-
pectations, beliefs and experiences) which are different in cultures,
and the nature of the environment, including the degree of risk,
significantly affect trust in HRI.

Hancock et al. [17] provided a comprehensive review of the fac-
tors affecting trust in HRI and classified them into three classes
related to human, robot, and environment. Human-related factors
can be separated into ability-based (e.g., competency, engagement,
expertise, and awareness) and characteristics-based such as culture,
expectancy, comfort, and satisfaction. Robot-related factors can be
divided into attribute-based and performance-based. Both attribute-
based (e.g., proximity, robot personality, and anthropomorphism)
and performance-based (e.g., behavior, reliability of robot, and level
of automation) significantly affect trust. Environment-related fac-
tors included team collaboration and tasking. For successful HRI
in each environment, human and robotic teammates must act posi-
tively by sharing the goal, communicating effectively, knowing and
performing roles, and putting the needs of teamwork over those of
individuals [16]. In addition, the team-related trust factors include
role interdependence, team composition, shared mental models,
and societal impact [38].

Although Hancock et al. [17] identified the factors that influence
trust, they did not highlight risk and vulnerability presented by

a task or a setting. The HRI can be varied across settings due to
the level of risk [35]. Besides, Abbass et al. [1] has urged the HRI
community to reflect on the characteristics presented by different
settings. In particular, they have highlighted the importance of the
degree of risk, uncertainty, and potential gain to or for the trustor.
In addition, the characteristic may vary depending on the culture
that could influence trust. Therefore, this paper investigates how
trust varies across settings and cultures.

2.2 Trust transfer across settings
Different factors may influence humans’ trust in robots across
environments [24]. The intensity of a particular factor may be more
in one as compared to the other. This is because of the variation of
nature of the task, such as rationality and revocability of the tasks
[35], risk and human safety [36], and workload [11] in each setting.
For instance: risk may be perceived as higher for an interaction
where a robot is in close proximity to a human [26]. Very few studies
have been conducted on trust transfer in HRI, such as [35, 41, 47].

Robinette et al. suggested that trust factors may vary across
different domains and environments due to the level of risk. They
conducted an experiment inHRI in a non-emergency task to observe
human behaviour and then decide whether or not to follow the
robot’s instructions in an emergency evacuation scenario. Their
results showed that the trust varied between emergency and non-
emergency scenarios [35]. However, this work focused only on the
risk level and did not compare tasks with the same level of risk.

Soh et al. [41] investigated how humans’ trust in robots differ
across different tasks. They conducted an experiment using differ-
ent task household and driving tasks. They found that human trust
changed across these tasks. In the same context, Xie et al. [47] also
presented a study to explore the impact of robot capability and
intention on trust across three different tasks (searching, mapping
and firefighting) using an unmanned vehicle. They found that hu-
mans trusted robots differently in these tasks based on the robot
capability change. However, these studies focused only on the ro-
bot’s capabilities as a factor influencing the transfer of trust across
different settings. From these existing studies, we understand that
some factors may become more prevalent in one setting compared
to the other. The research described in this paper goes beyond the
existing work and focuses on investigating the range of factors
influencing trust in different settings and how they vary across
different settings.

2.3 Culture and trust
Several studies have investigated the impact of cultural background
on HRI trust (e.g., [27, 31, 34, 44]). These studies concluded that
people belonging to different cultures are likely to trust robots
differently. However, most cross-cultural HRI studies have concen-
trated on Western vs. East Asian cultures; in contrast, very little
research has involved Arab culture [17]. The Arab world is a re-
gion of 22 countries with a population of 620 million and straddles
the continents of Asia and Africa [39]. We believe that the Arabic
region and culture should be involved more fully in HRI research.

Rau et al. [34] investigated the effects of culture, robot appear-
ance and task during HRI on participants from China, Korea and
Germany. The results showed that participants differed significantly
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on the four scales they proposed: likeability, engagement, trust and
satisfaction. In addition, Nomura et al. [31] conducted a survey
using the Frankenstein Syndrome Questionnaire [43] to examine the
differences in social acceptance of humanoid robots between Japan
and the UK. They found that social acceptance of humanoid robots
differed across the two countries. However, that study focused on
humanoid robots. In this work, we diversified types of robots in the
three scenarios to have a general insight into the transfer of trust
across cultures when robot types are different.

Andrist et al. [6] compared the relative effectiveness of knowl-
edge and rhetoric on the credibility of robots between Arabic-
speaking robots in Lebanon and English speaking robots in the
United States in a collaboration task. The study found that Arabic
users were more critical while rating robots’ perceived credibil-
ity than American users. More recently Lim et al. [27] reviewed
cultural influences and factors such as knowledge, expectations,
perception, attitude, and behaviour towards robots worldwide. The
findings show that cultural backgrounds influence these factors
toward robots.

In summary, the previous work in this area has several limita-
tions, including the lack of investigation of the impact of cultures
on human trust in different HRI scenarios and the shortage of ex-
amining all the aspects of Arab culture, not only language. Through
this work, we attempt to see how these factors vary across cultures
for three different settings.

3 STUDY DESIGN
We conducted two online studies. Study one was conducted in KSA
and study two was conducted in the UK. The two studies were used
to test the following hypotheses:

H1: The number of factors affecting participants’ trust will differ
across human, robot, environment related factors in the three HRI
settings.

H2: Participants’ trust perception score (TPS) (H2a) and trust
relevance score (TRS) (H2b) in the robots will vary significantly
across the three HRI settings.

H3: Participants’ trust perception score (TPS) and trust relevance
score (TRS) will vary significantly across cultures.

To ensure ethical integrity, two applications were submitted
to the university ethics board. The applications were approved
following a review process.

3.1 Task
The task followed twelve different steps as illustrated in Figure 1
and the task presentation that we used.1 The task involvedwatching
three videos of human robot interaction in three different scenarios.

(1) Guiding: a dog guide robot led a blind person through narrow
and clustered spaces to his destination [46].

(2) Healthcare: a teleoperated robot that assists medical practi-
tioners in diagnosing patients remotely with a nurse’s assis-
tance [48].

(3) Manufacturing: a manufacturing robot collaborates with
workers on an assembly line to construct a product [12].

1https://docs.google.com/presentation/d/1UIB3QNgHHkggqCGz1s_
K7Dm3q3yLTD0m/preview

Figure 1: The steps taken in theworkshop (upper left to lower
right).

3.2 Participants
In study one, we recruited 18 participants (Mean age: 35.16 years,
SD = 6.88, 44% female) from KSA. Participants were classified as
experienced with robots into high, medium, low and no experience.
Participants were categorized as high experienced if they reported
having controlled and/or built a robot, medium experienced if they
reported using robots several times, and low experienced if they re-
ported interacting with robots a few times. 3 participants had high
experience interacting with robots. 4 participants had medium ex-
perience interacting with robots. 8 participants had low experience
interacting with robots. 6 participants had no experience interact-
ing with robots. In study two, we recruited 18 participants (Mean
age: 27.77 years, SD = 7.21, 56% female) from the UK. 4 participants
had high experience interacting with robots. 5 participants had
medium experience interacting with robots. 4 participants had low
experience interacting with robots. 5 participants had no experience
interacting with robots. It is worth noting that the experience with
robots was similar among participants in both studies. All the partic-
ipants were postgraduate students and academics in the computer
science department at their respective universities. Participants
were invited via email and flyers. In each study, we conducted the
workshops with a group consisting of three participants at a time.
The registration for the study was managed using online applica-
tion for registration (Calendly 2). The workshop was conducted
online via zoom with all the participants.

3.3 Procedure
The study was conducted in two parts: 1) evaluating in the three
HRI scenarios; and, 2) a focus group activity. Participants initially
received a participant information sheet, consent form, and Zoom
link before each meeting. In the evaluating HRI scenarios, partici-
pants completed the following steps:

(1) Participants completed the demographics questionnaire.
(2) Participants watched the HRI video.
(3) Participants completed the questionnaire to rate the robot

using TPS and TRS respectively.

2https://calendly.com

https://docs.google.com/presentation/d/1UIB3QNgHHkggqCGz1s_K7Dm3q3yLTD0m/preview
https://docs.google.com/presentation/d/1UIB3QNgHHkggqCGz1s_K7Dm3q3yLTD0m/preview
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Table 1: Frequency of factors affecting trust across the three
scenarios in study 1 and study 2. ‘R’ refers to Robot, ‘H’ refers
to Human and ‘E’ refers to Environment.

Scenario Study 1 Study 2
H R E H R E

1 3 22 4 4 33 5
2 5 15 1 7 28 9
3 2 14 2 5 25 7

(4) Participants wrote the factors affecting their trust in robots
in the demonstrated interaction.

(5) Participants repeated steps 2, 3, and 4 for the other two
scenarios.

Focus group activity: At the end of the workshop, we used
the mini-group discussion method. The three participants with
sufficient knowledge of the topic were asked to discuss the factors
affecting trust in the three different scenarios after watching each
video in the light of Hancock’s model of trust. The groups discussed
the following themes in each scenario: 1) Human-related factors,
2) Robot-related factors, and 3) Environment-related factors. The
participants had an opportunity in each scenario to discuss their
thoughts, and we recorded the discussion to analyse the data. The
average duration of each group discussion was 20 minutes.

3.4 Measurements
To measure trust and examine changes in trust between different
situations, we used the TPS developed by Schaefer [38]. We asked
participants to complete the TPS questionnaire to rate their trust
in the robot in each scenario. The scale has 40 items and a sub-
scale of 14 items (function successfully, act consistently, reliable,
predictable, dependable, follow directions, meet the needs of the
mission, perform exactly as instructed, have errors, provide appro-
priate information, malfunction, communicate with people, provide
feedback, and unresponsive) to rate the robot as a percentage. This
study used the 14 items subscale because it had the most relevant
factors according to the scenarios depicted in the video. Following
the instruction given in [38], we computed the trust score by first
reverse coding the ‘have errors,’ ‘unresponsive,’ and ‘malfunction’
items, then summing the 14 item scores and dividing by 14.

To measure the relevance of trust, we asked participants to rate
the relevance of trust in each scenario on a 5-point Likert-like
scale. The scale ranged from not at all relevant to very relevant..
We coded the frequency of the factors affecting trust across the
three settings. We grouped the frequencies for the three themes
(human, robot, & environment). This measurement was regarded
as “factors” affecting user’s trust. We used NVivo 12 software to
code the qualitative data to explore the factors influencing human
trust in robots.

4 RESULTS
4.1 Quantitative findings
4.1.1 Study 1 (Saudi Arabia). To test H1, we conducted a Chi-
Square Goodness of Fit Test to determine whether the frequency of
human, robot and environment related factors was equal between

the three scenarios. The frequency data can be seen in Table 1.
We did not find a significant difference among the frequencies
of human-related factors, robot-related and environment-related
factors across the three scenarios: 𝜒2 (2, 18) = 1.40, 𝑝 = 0.49. 𝜒2 (2,
18) = 2.23, 𝑝 = 0.33, 𝜒2 (2, 18) = 2.0, 𝑝 = 0.37.

To testH2, we conducted a one-way analysis of variance (ANOVA)
to compare the TPS and TRS across the three scenarios. We found
a statistically significant effect of scenarios on the TPS across the
three conditions F(2,51) = 3.9, 𝑝 < 0.05. We also conducted a post-
hoc test to understand the difference between scenarios. The test
indicated that the TPS for scenario 2 was significantly lower than
scenario 1 and scenario 3. However, the TPS in scenario 1 did not
differ significantly from scenario 3.

We found a statistically significant effect of scenarios for TRS
across the three conditions F(2,51) = 11.11, 𝑝 < 0.05. A post-hoc
analysis indicated that the trust relevance for scenario 3 was signif-
icantly higher than scenario 1 and scenario 2. However, the trust
relevance in scenario 1 did not differ significantly from scenario 3.
The mean (M) and standard deviation (SD) can be found in Table 2.

4.1.2 Study 2 (United Kingdom). To test H1, we conducted a Chi-
Square Goodness of Fit Test to determine whether the frequency
of human, robot, environment related factors was equal between
the three scenarios. The frequency data can be seen in Table 1.
We did not find significant differences among the frequencies of
human-related factors, robot-related and environment-related fac-
tors across the three scenarios, 𝜒2 (2, 18) = 0.8, 𝑝 = 0.64. 𝜒2 (2, 18)
= 1.14, 𝑝 = 0.56, 𝜒2 (2, 18) = 1.14, 𝑝 = 0.57.

To testH2, we conducted a one-way analysis of variance (ANOVA)
to compare the TPS and trust relevance score across the three sce-
narios. We found an non-significant effect of scenarios on the TPS
across the three conditions F(2,51) = 2.670, 𝑝 = .079. We found a sta-
tistically significant effect of scenarios for trust relevance across the
three conditions F(2,51) = 3.74, 𝑝 < 0.05. A post-hoc analysis indi-
cated that the trust relevance score for scenario 1 was significantly
higher than scenario 3. The M and SD can be found in Table 2.

4.1.3 Results – comparing Studies 1 and 2. To test H3, an indepen-
dent samples t-test was conducted to compare the TPS and trust
relevance score across the two studies. The findings show there
was a significant difference in the TPS for scenario 1 ( t(34) = -2.0,
p = 0.05.), scenario 2 t (34)=-2.23, p = 0.03.), and scenario 3 (t (34)=-
2.08, p = 0.04.) in study 1 and study 2, respectively. There was a
significant difference in the TRS for scenario 1 (t(34) = -1.9, p =
0.05), scenario 2 t(34)=-1.87, p = 0.05.), and scenario 3 (t (34)=4.13, p
< 0.001.) in study 1 and study 2, respectively. Overall, both TPS and
TRS varies across cultures. The mean and standard deviation for
both scores in both studies can be seen in Table 2.

4.2 Qualitative findings
The analysis process was as follows: 1) We transcribed the audio of
the group discussion and uploaded transcription files to NVivo. 2)
We created the themes that were derived from the Hancock model:
human-related, robot-related, and environment-related factors. 3)
Author 1 coded the transcripts. 4) Author 3 reviewed the codes to
ensure they were relevant to the trust factors and assigned them to
the appropriate themes. Here we discuss both studies’ results for
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Table 2: Mean (M) and standard deviation (SD) of TPS score and relevance score across the three scenarios in Studies 1 and 2.

Scenario N TPS score M TPS score SD TRS score M TRS score SD
Study 1 Study 2 Study 1 Study 2 Study 1 Study 2 Study 1 Study 2

1 18 0.76 0.78 0.15 0.11 4.11 4.67 0.96 0.69
2 18 0.66 0.77 0.16 0.13 3.50 4.11 1.04 1.28
3 18 0.78 0.82 0.12 0.17 4.83 3.72 0.38 1.07

each theme and later compare with each other. The participants
for both studies were coded as Participant (P), P1, P2, P3, ..., P18,
respectively. To ensure transparency and open science framework
we have made the data analysis sheet available.3 In Table 3, based
on the qualitative analysis, we list participants’ identified factors
influencing human trust in robots.

4.2.1 Study 1 (KSA). Human-related factors. Participants iden-
tified controllability as a novel ability-based factor in all three
scenarios. In scenario 2, two out of 18 participants highlighted the
importance of the amount of control humans have in the robots.
P1 commented “the reason for trusting the robot in this scenario
is that the healthcare practitioner is involved in the process and
can intervene to stop the robot if needed”. In scenario 1, two par-
ticipants pointed out the importance of controllability to maintain
safe operations. P9 commented “if there is an issue in the robot,
the user should take control to stop the robot”. One participant in
scenario 3 considered familiarity an essential factor. P13 reported
“wider use of robots in manufacturing can increase user’s trust”.

In addition, in line with Hancock et al. [17], two participants
mentioned that prior experience with robots will influence human
trust in scenarios 1 and 2. In scenario 1, P9 mentioned “the user
should have some experience and knowledge about the robot”. In
scenario 2, P2 said “the doctor seems to have no experience using
the robot, and that could cause trouble”. In Figure 2, we can clearly
see that factors did vary across different scenarios. For instance:
situational awareness was only considered important for scenario 2
by two participants. P14 stated “the community’s awareness could
affect the use of robots, especially in healthcare”. P17 mentioned
“people understanding robots and how they work in healthcare is
important to trust the robot”.

Robot-related factors. Participants identified new performance-
based and attribute-based robot-related factors that were not found
in Hancock model of trust [17]. Performance-based factors included
noise and th robot’s energy source. Brand value was identified as
an attribute-based factor. One participant in scenario 1 considered
noise as an important factor. P6 mentioned “noise is one of the fac-
tors to be considered because in this case, the robot is very noisy”.
Six participants in scenario 1 and 2 considered the robot’s energy
source as a significant factor affecting user trust. Participants be-
lieved that the robot’s battery must be qualified to operate the robot
to assist people, particularly in outdoor environments. For instance,
P16 stated “battery life is the critical element while designing such
a system: what if the dog ran out of battery, how does the blind
person get home?”. P18 also reported the brand value in scenario 1:
“the company that makes the robot in the guiding scenario will influ-
ence my trust. If Facebook or Google makes the robotic guide robot,

3https://drive.google.com/drive/folders/1G4v5jDZSxCrEkcQ3MjZKFgNTL-FT4Zkc

my trust will be low because these two companies have a terrible
reputation with privacy.” Furthermore, performance-based factors
including mode of communication and failure rate were commonly
presented in all scenarios. Three participants mentioned the mode
of communication in all scenarios. For example, P8 stated “in terms
of giving feedback, robot dog should communicate verbally to the
blind user”. Six participants also presented the behaviour factor in
scenarios 1 and 2. Participants described the robots’ behaviour as
speed, smoothness of the movements, precision and following of
direction. In scenario 1, P2 stated “robot should respond quickly”.
P9 mentioned “the robot should choose the correct path”. In sce-
nario 2, P15 reported “the robot’s movement should not be slow”
and another mentioned:“the robot’s movement should be fast and
precise”. In Figure 2, we can clearly see that factors did vary across
different scenarios. For example, noise and brand value were only
considered in scenario 1.

Environment-related factors. Risk was the only task-based
factor that differed fromHancock’s model of trust [17]. In scenario 1,
P6 commented the robot’s malfunction could lead to serious damage
for human and environment. In addition, the participants’ responses
aligned with the factors identified in [17] regarding team perfor-
mance, physical environment, and task type. P9 mentioned “the
physical environment is essential for trust, and that includes path,
object, and the type of connection between humans, and all these
elements should be working well”. To compare the three scenarios,
Figure 2 shows that the factors related to the environment varied
across scenarios. For instance, the task type was reported important
in scenario 1. P12 said “the type of task could affect trust even if
the robot is the same”. In scenario 3, one participant considered
team performance as a team-collaboration factor influencing trust.
P17 mentioned “the team performance is fantastic, and this will
increase the confidence to use and work with robots”.

4.2.2 Study 2 (United Kingdom). Human-related factors. Partici-
pants identified controllability, accountability, the user’s condition
and familiarity as factors affecting trust in robots. Interestingly,
there was no one common human-related factor across the three
scenarios. However, in scenarios 2 and 3, five participants consid-
ered controllability as extremely important. For instance, P4 said “a
human being present with the patient influences the degree of trust
that the patient gives to the robot”. In scenario 2, one participant
felt that the user’s condition was important: P5 reported “the pa-
tient’s health condition can affect the interaction”. One participant
highlighted accountability as a significant factor: P8 mentioned
“in scenario 2, the leader will be responsible for the interaction”.
In scenarios 1 and 3, four participants highlighted familiarity as
an important factor: P11 stated “the everyday use of robotics in a
manufacturing setting can lead to a high degree of trust.”

https://drive.google.com/drive/folders/1G4v5jDZSxCrEkcQ3MjZKFgNTL-FT4Zkc
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Table 3: Frequency of factors affecting human trust in robots across the three scenarios for Study 1 and Study 2.

Themes Sub-themes Study 1 - Initial codes (Frequency) Study 2 - Initial codes (Frequency)

Human-related factors Ability-Based

Controllability (5) Controllability (5)
Prior experiences (2) Prior experience (1)
Situation awareness (2) Situation awareness (2)
Familiarity (1) Familiarity (4)

Accountability (1)
User’s condition (1)

Characteristics-Based Culture (2) Culture (2)

Robot-related factors

Performance-Based

Behavior (6) Behavior (20)
Reliability (6) Reliability (20)
Predictability (2) Predictability (1)
Mode of communication (2) Mode of communication (8)
Failure rate (19) Failure rate (18)
Noise (1) Noise (1)
Robot’s energy source (6) Robot’s energy source (2)
Level of automation (1) Dependability (3)

Consistency (7)
Usability (4)

Attribute-Based
Adaptability (4) Adaptability (1)
Robot type (1)
Brand value (1)

Environment-related factors

Team Collaboration Team performance (2) Team performance (2)

Tasking

Task type (1) Task type (3)
Risk (1) Risk (8)
Physical environment (2) Physical environment (5)
Multi-tasking requirements (1) Choice of use (2)

Clarity of task (1)

Figure 2: Commonalities and differences among factors affecting human trust in robots across three scenarios in Studies 1 & 2.

Robot-related factors. The findings represent five common
factors in all scenarios in line with Hancock’s model of trust [17]:
behaviour, mode of communication, dependability, failure rate, and

reliability. In addition, the analysis identified new performance-
based factors, including consistency, usability, noise, and the ro-
bot’s energy source. Seven participants considered consistency as
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a critical factor influencing user trust in scenarios 1 and 3. For in-
stance, P11 stated “in scenario 1, I see the consistency is important,
does the dog keep moving forwards towards the goal, or does it
keep shuffling back?”. Four participants reported usability as an
important factors. P4 mentioned “has the robot been demonstrated
that it’s more efficient than human?”. Two participants considered
the robot’s energy source as significant in scenarios 1 and 2. P3
mentioned “the robot’s battery should be considered while design-
ing the robot”. P6 reported noise in scenario 1 “the dog robot is
noisy; that could affect the use and trust”. In general as shown in
Figure 2, we can clearly see that factors did vary across different
scenarios. For example, noise was only considered in scenario 1.

Environment-related factors. The findings identified new
ability-based factors including risk, the clarity of task and the choice
of use. The risk factor was common in all scenarios, and eight par-
ticipants mentioned this. Participants believe autonomous robots
can represent more risk to people, mainly when close to them. For
example, P1 reported “in scenario 1, if the robot stops working in a
bustling road that is a hazard”. In scenario 1, P9 stated the clarity
of the task “the task should be straightforward and align with the
object”. P16 also mentioned the choice of use in scenario 2 “choice
of use is one of the factors that might influence trust because using
robots is not always an option”. Participants’ responses aligned
with Hancock’s model [17] regarding team performance, the phys-
ical environment and task type. The physical environment was
shared in all scenarios. The physical environment includes path,
object, and the type of connection between human and robot based
on participants’ explanations. The task type was a common factor
in scenarios 2 and 3. As we can see in Figure 2, environment-related
factors varied across the three scenarios. For example, clarity of
task was only considered in scenario 1, whereas the choice of use
was only in scenario 2.

4.2.3 Results – comparing studies 1 and 2. When comparing the
two studies, we find new factors that were not included in [17].
Participants mentioned controllability (59% of times) followed by
familiarity (29% of times) in both studies as significant human
factors affecting their trust in the robot. Interestingly, controllability
was considered important in all three scenarios in study 1, but in
study 2 it was considered important only in scenarios 2 and 3.
Likewise, familiarity was raised once in scenario 3 in study 1, but
was citedmore frequency in scenario 1 and 2 in study 2 (see Figure 2).
For robot-related factors, participants mentioned the robot’s energy
source (36% of times), consistency (32% of times) and usability (18%
of times). Similar to the human-related factors, participants did not
consider these factors in all scenarios. In study 1, energy source
was highlighted in all scenarios. On the contrary, energy source
was cited only in scenario 1 and 2 in study 2 (see Figure 2). Lastly,
for environment-related factors, risk (75% of times) turned out to be
the most frequently stated factor affecting a participant’s trust in
the robots. Intriguingly, risk was considered important in scenario
1 in study 1 while in study 2, participants deemed it important in all
the scenarios (see Figure 2). Table 3 further highlights the common
factors among the two studies. In summary, the qualitative analysis
indicated cultural differences in the two studies when highlighting
the importance of factors affecting trust across different scenarios.
In addition, the analysis identified the significance of a factor based

on how frequently it was stated by participants; however, we remain
conscious that more empirical evidence is needed to establish the
significance of a given factor affecting trust. The percentage of the
frequency of a new factor was computed by dividing the number
of times a new factor was highlighted by the total number of new
factors highlighted for a certain type of factor (human, robot, or
environment) in both studies.

5 DISCUSSION
5.0.1 Quantitative findings. H1 indicated that the frequency of
factors affecting trust would vary across the three HRI settings. We
show that the number of factors (human-, robot-, environment-
related) in the two studies did not differ significantly across the
scenarios. Hence, H1 was rejected in the light of frequency analy-
sis. Regardless, we see several significant trends and discuss them
through the lens of both quantitative and qualitative findings. First,
interestingly, robot-related factors were found to be most frequently
highlighted in both studies. This finding is comparable with Lewis
et al. [26], which has shown that robot-related factors are the most
influencing factors affecting trust in robots. Second, although the
number of factors did not differ across scenarios, the qualitative
insights provide evidence that factors affecting users’ trust vary
across different HRI scenarios. We can clearly see from the analy-
sis that several factors were considered important in one scenario
but not in another (see Figure 2). For instance, Noise was consid-
ered important in scenario 1 in both studies but not in scenario 2
and 3. Lastly, and intriguingly, the number of robot-related and
environment-related factors was significantly higher in study 2
when compared to study 1. This suggests that participants in the
UK stated more and new factors (consistency, usability, and clarity
of task) compared to the participants in KSA. All of these finding
highlight the multi-facetedity of trust as a construct and reflect on
the challenge of measuring it in different HRI settings [1].

H2 predicted that trust in the robots would differ across the
three HRI settings. We did see a significant variation of TPS in
study 1 but a non-significant variation of TPS in Study 2. Hence,
H2a is partially accepted. This finding builds on the existing work
that highlights how users’ trust ratings vary across different tasks
[35, 40, 47]. We see that participants’ TPS only differed significantly
between scenario 2, scenario 1 and scenario 3 in both studies. It is
worth highlighting that scenario 2 dealt with a healthcare context.
We speculate that participants were more cautious when trusting
robots in healthcare settings. Past work shows that the adoption
of robots in healthcare raises performance expectancy, trust, pri-
vacy and ethical concerns [4, 30]. It was also intriguing to see that
TPS was highest in scenario 3 (manufacturing), followed by sce-
nario 1 (guiding) in both studies. This finding builds on existing
literature that has reported how participants assign stereotypes
towards robots based on their body shape [8] or their context of use
or prior experience [2]. Hence, in this case, participants may have
held positive notions about robots in manufacturing or guiding
blind users, and this may have resulted in a higher trust score.

The TRS varied significantly across scenarios in both studies.
Hence H2b was accepted in both cases. Intriguingly, trust was
considered least relevant in scenario 2 in study 1 and scenario 3
in study 2. We speculate that due to the teleoperated nature of the
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robot in scenario 2, overall, participants may have found it to be
less relevant as a human had control of the robot. This was also
reflected in their comments described in the qualitative findings. In
contrast, we speculate due to participants’ backgrounds (living in
the UK) and their prior experience, scenario 3 (manufacturing) was
regarded least relevant in study 2. We understand that people in
Europe are more familiar with industrial robots than those in the
Arab regions. Comparability, we see a higher level of progression
in terms of the use of robots in manufacturing in the UK [14].

The finding further demonstrated compelling trends. In particu-
lar TPS was directly proportional to TRS. It suggests an increase
in TPS will cause an increase in TRS or vice versa. Surprisingly,
participants in study 1 gave a lower TPS and TRS in scenario 2, and
this was in contrast with other scenarios. We understand that par-
ticipants may have found the healthcare scenario less relevant and
therefore showed lower trust in the robot. It suggests participants’
trust in a robot is dependent on their perception of the relevance
(less or more) of the robot in a given setting.

Lastly, H3 indicated that participants’ TPS and TRS would vary
significantly across cultures. The analysis confirmed that the TPS
and TRS differed significantly across the two different regions.
Hence, H3 is accepted. These findings are in line with related work
results. (e.g, [6, 27, 44] which also shows that multiple factors asso-
ciated with an individual’s culture affect their perception of trust in
robots. Further, the findings show that the TPS scores in all scenar-
ios were higher in study 2 than in study 1. Previous studies have
shown that participants from Western countries show more trust
in robots compared to participants from Eastern countries [20]. In
particular, Andrist et al. [6] has shown that Arab participants were
more critical of social robots’ credibility compared to US partici-
pants. These findings also help clarify this trend.

5.0.2 Qualitative findings. We found new factors related to hu-
mans, robots and the environment. The human-related factors
included controllability, familiarity, the user’s condition and ac-
countability. In both studies, participants considered controllability
as an important human-related factor in all scenarios except sce-
nario 3 in study 2. We see work in HRI, particularly on measuring or
modelling trust in real-time, and found that the amount of control a
human operator has in the interaction or the number of times a hu-
man takes control during HRI is an indication of their trust [15, 22].
But, interestingly, it is important to understand how much control
is sufficient in order to build trustworthy robots; and, how this
varies across different settings [7]. Participants also highlighted
accountability as one of the factors. Accountability can be well
connected with the amount of control human will have in an au-
tonomous robots. Perhaps, this finding helps us think and reflect
on the aspect of responsibility in the case of an incident [32, 33].

The robot-related factors included energy source, consistency,
usability, noise and brand value. The environment-related factors
included task clarity, choice of use, and risk. Brand value was the
only new factor in study 1. We found that individuals belonging to
Arab culture care more about brands than Europeans [5] and believe
that this explains the given finding. The risk factor was common in
both studies. Participants believed that the degree of risk involved
in a task can affect their trust. For example, in the guide robot
scenario, all participants in both studies reported risk because the

blind human was in a vulnerable situation. Other factors identified
the vulnerability of such a robot’s energy source. For instance,
participants were worried about the battery life of the robot in
the guide robot scenario. Since we analyse our data in the light of
Hancock et al.’s model [17], we consider risk to be a new factor. It
is interesting to note that recent work also reflects on the role of
risk in human robot trust [19, 42]. We also see common factors in
study 1 and 2 that can be seen in Hancock et al.’s model of trust
[17] (see Table 3). Reliability and failure rate were presented in
all scenarios in both studies. According to Washburn et al. [45],
reliability and errors rate factors are related to each other and have
a strong relationship with human trust. All participants in both
cultures stated the mode of communication factor in all HRI as
a significant factor. For example, participants suggested that the
robot communicate verbally since the user is blind. We posit that
when the user has a proper way to communicate with the robot and
receives clear feedback, the level of trust will increase significantly.
In summary, the take-away finding from this work is that not all
factors are relevant for all HRI scenarios due to the differences in
the nature of the setting and the degree of risk and vulnerability
presented.

6 CONCLUSIONS, LIMITATIONS AND FUTURE
WORK

In this paper, we investigated how participants’ trust varies across
three different human-robot interaction (HRI) settings (a dog robot-
guided blind people, a teleoperated robot in healthcare, and a man-
ufacturing robot). We also studied how this trust varies across two
different cultures (Saudi Arabia (KSA) and the United Kingdom
(UK)). In addition, we investigated how factors affecting users’ trust
differ across HRI settings and cultures. We conducted two studies:
one in KSA and one in the UK. We found the following: 1) partici-
pants’ trust perception differed across HRI settings in the KSA study
but not in the UK study. 2) Participants identified several “new” fac-
tors that affect their trust in robots in both studies across the three
settings. These findings are thought-provoking and highlight the
importance of the multifacetedness of the metric known as “trust”.
The findings also highlight that the dynamic nature of a given HRI
setting (healthcare, manufacturing or guiding) can challenge the
idea of a one-size-fits-all model for human-robot trust. Furthermore,
they reflect that the models of human-robot trust should consider a
dynamic and evolving design because it presents a great challenge
to cover all factors in a single one.

In both studies, the attributes of participants were limited. They
were all academics and students in a Computer Science department,
and of a similar age group. Future workwill consider replicating this
work across diverse cultures, and will also involve participants from
more diverse backgrounds. Future work will continue to consider
HRI contexts presenting varying risks and vulnerabilities. We hope
that the outcomes of these studies will help us understand novel
factors affecting trust, and will later enable the HRI community to
conduct empirical studies to ascertain the value of these factors
that could affect users’ trust in robots across diverse settings.
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