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ABSTRACT
Formal methods is a field that has a long standing history within
Computer Science. At its core, it involves the use of mathematical
formalisms to model and reason about computer systems and pro-
grams. The application of formal methods to verify that railway
signalling systems operate safely and correctly is particularly well
established within academia and is now beginning to see real appli-
cations within the railway sector. However, many contemporary
approaches frequently detect false positive safety violations that
can require lengthy manual analysis by expert engineers. It has
been shown that such errors can be mitigated with strengthening
invariants, non-trivially generated properties which hold for all
reachable states, or configurations, of a program under verification.

In this work, we report on the use of machine learning to explore
such state spaces autonomously and provide various visual aids to
assist engineers in understanding and inducing invariant properties
to help with verification. We conducted a focus group with an engi-
neering team specialising in railway signalling systems, soliciting
feedback on these visualisations and co-designing suggested im-
provements for the application domain. The results were two-fold;
our visualisations allowed participants to explore invariants, but
also highlighted improvements to our invariant mining approach
by leveraging their domain knowledge.
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•Computingmethodologies→ Reinforcement learning; •Human-
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1 INTRODUCTION
Railway signalling systems are complex, safety critical, and ex-
pected to operate within the confines of a formal safety specification.
Deviation from these operational parameters can be catastrophic,
leading to collisions, casualties and loss of life. The interlocking, a
“safety layer” responsible for receiving operator inputs, such as route
setting requests, and enactment of physical track changes, is an inte-
gral component of such signalling systems. Typically, interlockings
are implemented as Programmable Logic Controllers (PLC) [40]
with the highest Safety Integrity Level (SIL 4) required for their
development [8]. We consider those interlockings implemented in
Ladder Logic [20, 30], a purely Boolean, graphical programming
language. It is imperative these systems undergo rigorous testing
procedures to ensure they adhere to strict and formally defined
safety criteria. Formal verification facilitates such procedures by
constructing a mathematical model against which properties can
be tested. Model checking [15] is one formal verification technique
employed to systematically check whether certain properties hold
for all configurations (or states) that a system can operate within.
Such approaches lack widespread use within the railway industry
despite demonstrative promise in academia [3, 12, 18, 19, 25, 26, 31].
In particular, one limitation of model checking solutions is often
false positive results due to over approximations introduced as part
of themathematical checking, typically when using techniques such
as inductive verification [37]. In particular, inductive verification
fails to consider whether system states that violate a given property
are indeed reachable by the system from a defined initial configu-
ration, rather than from any random initial configuration (the over
approximation). These false positives often require lengthy man-
ual inspection, with limited information available and substantial
domain expertise required. One solution to overcome this issue is
to introduce so-called invariants to suppress false positives [4]. In-
variants are properties, expressed as simple propositional formulae
in our case, which hold for all system states. The aim is to intro-
duce invariants to help bound the region of reachable states when
model checking. However, generating sufficiently strong invariants
automatically is non-trivial [10].

To support systems engineers in this process, we have co-developed
a process for automatically suggesting invariants for human-in-the-
loop evaluation with Siemens Mobility UK. In this paper we report
on this process and the development of visual representations for
suggesting invariants. In particular, our approach involves training
reinforcement learning agents to intelligently traverse program
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Figure 1: Pipeline for formally verifying railway signalling
systems according to a set of safety criteria.

state spaces, inducing state transitions through manipulation of
program inputs, whilst recording sets of unique states, or observa-
tions, and maximising state coverage. Through iterative simulation,
a state dataset is generated from which we render a series of plots
for both validation and explainability of our framework. We then
engage in a process of participatory design in exploring whether
these plots allow railway engineers to infer invariants and spot
structure across programs they develop. Given the complexity of
interlocking systems, we do not expect study participants (engi-
neers) to exhibit awareness of this structure. It is envisaged that this
structure when inspecting “candidate” properties may help users
in deducing invariants and in reducing errors within the program.

While these abstractions required some introduction in terms
of their “readability”, we report on feedback from a focus group of
signalling systems engineers. Results around how such visualisa-
tions can be used to improve design workflows are discussed, but
also somewhat more interestingly, domain expertise have helped
develop new insights in terms of our approach’s performance and
interpretability.

2 BACKGROUND
Our contribution builds upon existing work for model checking
Ladder Logic programs [27, 30], although the frameworkwe develop
can be applied more broadly to the field of model checking. In
the following section we introduce the key concepts, but, as the
mathematical models are not the focus of our work, we refer readers
to more comprehensive material concerning Ladder Logic [17],
model checking [15], program invariants [10] and reinforcement
learning [32, 33, 38].

2.1 Model Checking of Ladder Logic
Ladder Logic is a graphical programming language commonly used
for PLCs. Essentially it allows users to construct programs that
consist of Boolean expressions whose evaluation, based upon the
given inputs, results in a set of Boolean outputs being computed.
Interlockings run these programs in a cyclic fashion, with inputs
constantly being updated with information from the railway (such
as train positions) and outputs (or coils) being used to update the
state of railway infrastructure (such as signals). By cycling through
all permutations of input variable valuations and computing the
corresponding outputs, we can unfold the reachable state space for
a given Ladder Logic program. This state space unfolding is the
basis of the verification framework by James et al. [27] that we
build upon.

Model checking concerns the theory and practice of mathemati-
cally proving system correctness in accordance with some formal
specification. Typically, this entails representing systems abstractly,
as a set of states describing unique configurations a system may

assume during its operation, and transitions the system may take
between these states. Figure 1 depicts the pipeline for interlocking
verification taken by James et al. [27]. Reading from left to right,
the Ladder Logic program is translated into a model consisting of a
set of initial configurations and a mathematical transition function.
This is used to compute the previously mentioned state unrolling.
Moreover, a generic safety specification is translated into a con-
crete propositional safety property for a given railway plan. Every
unrolled state is then checked to see if it upholds the given safety
property. This results in either a positive result that the property is
true for all system states, or a counterexample which highlights a
run of the system where the property is violated.

Figure 2 depicts an example state space concerning a pedestrian
crossing implemented with safety violations. Each node displays
a truncated list of program variables. The root node connected to
a single in-edge represents the initial state from which property
checks and state traversal begin. Valuations over the input variable
pressed induce these state transitions, indicating a physical button
press and pedestrian request to cross. States are systematically
traversed in an attempt to verify whether some formal property
holds for every reachable state. In the event verification fails, an
error trace from the initial state is returned. States within the green
section uphold the safety property, whilst those in the grey section
violate it. Figure 2 highlights a valid error trace in blue. Additionally,
red nodes depict the occurrence of false positive errors where states
in breach of the safety property are unreachable in terms of program
execution from the defined initial state. However such states are
still checked when using abstractions that make model checking
feasible, such as induction based verification approaches [28–30].
To avoid such false positive results, contemporary solutions aim
to introduce invariants that are known properties of the system
to constrain the checking of states to those that are reachable.
Introducing sufficiently strong invariants helps reduce this over
approximation and can mitigate such errors. It is here that we
use reinforcement learning to explore the state space and mine
invariants from observations throughout the exploration.

2.2 Reinforcement Learning for Program
Exploration

Reinforcement Learning (RL) is a machine learning paradigm typi-
cally used to solve sequential decision making problems by mod-
elling the optimal control of some incompletely-known Markov
Decision Process (MDP) [39]. In reinforcement learning the MDP
serves as our environment, where through simulation, software
agents manipulate program inputs, observe the induced state tran-
sitions and learn to optimise this traversal to maximise unique state
observations. We expect invariants to manifest as properties persis-
tent across all observations, thus a resultant collection of unique
states serves as our dataset for invariant mining. Agent behaviour is
shaped through our own reward function which motivates discov-
ery of novel observations. Conversely, repeated observations are
deterred with negative rewards and early termination of simulation,
restarting the exploration from an initial state.
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Figure 2: Illustration of state space for program under verification. Nodes and edges indicate program states and their tran-
sitions. States found within the central radius (green) satisfy the safety property. States falling within the outer radius (grey)
violate the property.

3 RELATEDWORK
Automatic generation of invariants has received significant aca-
demic attention in recent years in terms of algorithmic contribu-
tions [9, 34, 36]. Many of these approaches focus on generating
invariants for high level programming languages, rather than purely
Boolean languages. At a high level, several approaches [4, 7, 11]
employ some form of iterative clause refinement through abstract
representations or symbolic computation. While entirely explain-
able, i.e logical operations applied to explicit state valuations, the
steps toward invariant proposal are typically obfuscated from any
end users. This is fine for the application domain of programming
languages and verification. However in the context of safety critical
work, it is necessary to explain and understand any invariants that
are introduced. Some approaches to invariant proposal employing
machine learning have adopted explainable practices, such as the
use of decision trees by Krishna et al. [21] but here no attention is
given to explaining how these properties are built. Having imple-
mented our own invariant mining technique with easily explained
and interpreted statistics, engagement with our focus group re-
vealed potential benefits in explaining this process, and involving
users in invariant formulation (see Section 6).

More broadly, the usability of formal methods tools has been
considered with respect to debugging of programs and in partic-
ular understanding counterexamples. Groce et al. [22–24] build
on existing model checking tools to localise faults in programs
through an IDE-like environment [14]. Using a familiar develop-
ment suite was seen as essential for developer usability, and their
tool allowed developers to focus on localised errors in code by com-
paring differences between variations of the same counterexample.
Several existing contributions build upon this notion of causality
in traces [5, 13, 35, 42], however in contrast to our work, this re-
moves the error from the context of the overall system state space.

Similarly, interpretation of raw outputs returned by model check-
ers, which is often highly mathematical, has been addressed for
interlocking verification by van den Berg et al. [41]. Considering
animation of simulated counterexamples as prone to introducing
modelling errors or open to misinterpretation, the authors tailor
error depiction according to the application domain. However, new
visuals must be drawn for every new counterexample. Our approach
depends on no such heuristics, simply reducing the complexity of
a view with which our end users are already familiar.

Approaches to visualising state spaces often use symbolic states
and transitions, ignoring the concrete changes in variables. For ex-
ample, UPPAAL [6] supports visualisation of system specification
through symbolic states, i.e viewing traces as a message sequence
chart, but not explicit state valuations. Ivy [36], an interactive veri-
fication tool, avoids the complexities of explicit representation by
ensuring specifications are defined using a restricted modelling
language. Other graph-based visualisation tools have proposed fil-
tered or reduced views of explicit states to narrow counterexample
analysis to some sub-region the space [41]. Similary, Aljazzar et
al. [1, 2] present DiPro, a tool built upon stochastic model checkers
to find probabilistic counterexamples and render them as interactive
directed graphs, employing visual analytics to highlight features
supporting debugging. We suggest simplifying the view of error
traces and provide visual analytics to aid debugging within the
context of an exploration graph, over which counterexamples can
be depicted, simplifying the textual sequence with an interactive
graphical one.

4 VISUALISATION & DATA GENERATION
In this section, we introduce three visualisations to co-design with
our focus group. Each plot provides a unique view of features per-
taining to the program under verification, representing different
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levels of abstraction for different analytical purposes. For each visu-
alisation, we generate two examples: a proof of concept to explain
the visualisation and an industrial program to solicit feedback. The
first refers to a Ladder Logic program implementing a pedestrian
light controlled crossing, presented in [27]. Plots concerning this
program are presented in Figure 3 (e.g, variables prefixed TL_* de-
note traffic signals). The second refers to a proprietary Siemens
interlocking program for a section of railway.

4.1 State diagram (Staterix)
In the case of invariant generation, it is possible to observe patterns
across states without considering transitions. To that end, we can
visualise the state space statically as an image. Consider the state
matrix, or staterix, in Subfigure 3a. Each column represents a distinct
variable while each row represents a distinct state. Cells are then
coloured to denote a binary value (blue : 0, yellow : 1) for that
variable, given the state. For example, we see that for states 𝑆0, ..., 𝑆5,
variable CROSSING always shares the same value as variable AUDIO.
We hypothesise that this staterix allows expert users to quickly
identify regions of interest based on salient patterns across states.

4.2 Phi Coefficient Matrix
Pearson’s correlation coefficient, or the 𝜙 coefficient, is a statistical
measure of relation between two binary variables [16]. Thus, given
a program composed of 𝑁 binary variables, we can compute an
𝑁 × 𝑁 correlation matrix between all pairs of variables. Coeffi-
cients range between [−1, 1], where −1 denotes a complete inverse
relation and 1 denotes a complete positive relation. By observing
the correlation 1 between variables CROSSING and AUDIO in Subfig-
ure 3b, we confirm the complete relation suggested by the staterix
in Subfigure 3a. Estimates of 𝜙 are computed based on the variabil-
ity of any two variables across the reachable state space, meaning
all states must be observed once to compute the true correlation.
Consequently, 𝜙 converges over time, necessitating a distinction
between three types of invariants in terms of these coefficients.
Extrema of −1 or 1 in the event of complete state space coverage
may be considered “true invariants” or “believed invariants” when
only partial coverage is achieved. Coefficients nearing complete or
inverse relations, irrespective of state coverage, are referred to as
“candidate invariants”. These have yet to be proven invariant but
with some code modifications, could remove the state(s) preventing
the complete relation. We also note that incorporating machine
learning in the design of safety critical systems is likely to be met
with skepticism. Statistical invariants suggested through empirical
measures of variability should make sense conceptually (i.e are
interpretable by developers responsible for building the system).
Aiming to deliver a tool capable of invariant suggestion, our ap-
proach should incorporate explainability measures where possible.
While the process of invariant generation can be automated, ulti-
mately it is developers who are responsible for incorporating any
suggested invariants when model checking.

4.3 Exploration Graph
The staterix allows users to identify invariants across state valua-
tions at a glance while the correlation matrix attributes a quantita-
tive value of that invariance. To contextualise where such invariants

may hold in terms of the program state space, we draw an inter-
active directed exploration graph. Depicting the program’s runtime
behaviour, nodes represent distinct valuations over the program
variables where connected edges denote variable changes inducing
a transition between those states. Subfigure 3c depicts an explo-
ration graph composed of the 6 reachable states represented in
Subfigure 3a. Values corresponding to a unique state or transition
are stored explicitly, allowing users to interact with and query
the graph. Graph structure is also stored via an adjacency matrix,
supporting basic connectivity metrics for visual analytics. We hy-
pothesise expert users investigating candidate invariants would be
able to quickly determine whether they should be true invariants by
inspecting the subset of states for which a property does not hold.

5 FOCUS GROUP: METHODOLOGY
We conducted a study constituting the participatory design process
in delivering a support tool for invariant mining. We presented our
set of visualisations to a group of domain expert developers to solicit
feedback regarding their utility in supporting manual verification
processes and explainability of results from our RL setting. Study
participants comprised a team of 6 systems engineers with a diverse
skillset within railway signalling. Participants recruited were asked
to characterise their principle roles within the engineering team.
This contextualised feedback according to the participant’s domain
expertise and exposure to particular facets of the system. Each par-
ticipant had a comprehensive understanding of the overarching
system within which interlockings function, as well as specialising
in a certain facet of that system. The team comprised a senior lead
within research and development (Participant A), four software
engineers responsible for interlocking implementation and verifi-
cation (Participants B-E) and a project coordinator (Participant F)
within the R&D department. Recruitment was performed based on
convenience and snowball sampling as the global population for
such engineers is relatively small, and with study data subject to
intellectual property constraints. No identifiable participant data
was collected beyond names and signatures submitted via consent
forms. Only the opinions and suggestions expressed during group
discussions were recorded for study purposes.

5.1 Procedures
We conducted a series of semi-structured discussions with focus
group participants in an isolated office space, limiting external
stimuli which could disrupt the session. The study was conducted
by three researchers, one of whom led an informal introduction
and opened the floor to any preliminary questions, before issuing a
consent form. An accompanying information sheet outlining data
collection, study objectives and implications of participation was
also provided. Focus group participants were then introduced to
the theoretical concepts behind the presented visualisations, as
they are predominantly abstract representations of the formally
defined system such users typically employ. An explanation as
to how these plots were rendered, what it is they represent and
how they are labelled was provided using examples from Figure 3,
which concern the pelican crossing program referenced in section 4.
Beyond understanding these “readability” requirements, we invited
participants (i.e prospective users) to develop their own insights
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Figure 3: Visualisations of reachable state matrix, correlation matrix and exploration graph.

from the plots rendered. Our set of visualisations, both pelican
crossing and interlocking examples, were presented via a laptop
and shared display, controlled by one researcher, cycling through
plots in accordance with the flow of discussion.

A principle aim of our focus group was to determine how in-
terpretable our invariant mining techniques are. For each staterix,
participants were asked to identify patterns which appeared invari-
ant or of interest. If invariants could be found, they were asked to
intuit why this property was present given the context. Given each
correlation matrix, participants were asked to identify complete
relations between two variables and posit why this correlation ex-
ists. Finally, within the context of an exploration graph, we asked
participants how they would expect to view invariants.

6 FOCUS GROUP: OUTCOMES
This section outlines key findings from the focus group, concerning
the usability of our proposed visualisations. Results went beyond
the scope of our research questions, suggesting our program ab-
stractions were informative in many respects, more so than we
had initially hypothesised. The diversity of participants in terms of
their role was also reflected in their feedback. Personnel in more
senior positions within the development team showed the most in-
terest in making the process hidden from verification engineers and
as automated as possible. Participants more involved in program
implementation demonstrated a greater interest in leveraging the
existing plots to inform debugging processes. Unexpectedly, our
visualisations abstracted enough of the RL learning framework for
group participants to leverage their domain expertise and suggest
improvements to guide training. Consequently, we identify the util-
ity of an interactive debugging tool to support human-in-the-loop
invariant generation. We include a mock design in Figure 4.

6.1 Staterix
As the highest level of abstraction, the staterix appeared easiest
to understand and proved our hypothesis was indeed valid. All

participants could suggest some property which appeared invari-
ant and were able to offer an explanation as to why the property
existed. Across members of the focus group, three properties re-
garding the underlying Ladder Logic program were noted. First,
logical expressions present in lines of code were apparent as cer-
tain variable columns mirrored each other’s value. Solid columns
within the staterix displaying a single colour were also noticed to
be invariant, i.e the variable was either always True (1 : yellow) or
always False (0 : blue). Another point raised during this discussion
was that of values which appeared to rarely change, i.e were set as
False for the majority of reachable states. A lead software engineer
remarked that these values were likely “noise” introduced by in-
termediary values, variables introduced as a placeholder for some
overarching operation. Indeed, inspecting the interlocking staterix
depicted in Figure 4, this appears to be the case for a large number
of variables. For the interlocking program, these patterns provided
a quick method of localising areas of interest given the staterix
comprises thousands of columns and potentially millions of rows.
Being large systems comprising thousands of program variables
and lines of code, representing the state space explicitly can become
cumbersome. Abstracting states also removes granular information
such as valuations over variables, which the staterix avoids. In the
event verification produces a counterexample, more experienced
engineers may choose to query operations pertaining to a subset
of variables based on staterix patterns, such as which variables
change frequently, which variables mirror each other or, in the case
of solid columns, which values are invariant. It was proposed by
participant D this staterix be made interactive, allowing users to
filter the x-axis by toggling a list of program variables or by regular
expression, to support this level of inspection.

6.2 Correlation Matrix
Our intuition as to the explainability of correlation estimates for
invariant generation was correct. Understanding phi correlation is
simply a measure of variability between a binary pair, participants
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Figure 4: Mock design for interactive debugging tool for invariant generation and counterexample analysis, resulting from
focus group outcomes. Variable identifiers have been replaced where plots refer to results from proprietary programs.

quickly interpreted the values present in the correlation matrix for
both examples. Unlike contemporary invariant generation meth-
ods, little background knowledge is required to understand how
correlation is computed and what those values denote. Wherever
an invariant exists, at least one binary pair will be found with a
complete correlation −1 and 1, thus making measures of invariance
easy to interpret and explainable. Participant B, specialising in the
implementation of verification systems, suggested using 𝜙 coeffi-
cients to reduce the program model. If we find 𝜙 = −1 between
literal 𝑎 and literal 𝑏, then we can replace all occurrences of variable
𝑏 by the negation of 𝑎. Applying this reduction across all instances
of inverse correlation may in turn reduce the set of reachable states.
Participant C noted that deducing candidate invariants from the
correlation matrix was done manually and concerned only literal
pairs. Since 𝜙 can be computed between any binary valued pair,
it was suggested we determine the relation between conjunctions
of literals to form more complex invariants. Variable identifiers in
Ladder Logic, particularly within the railway industry, tend to share
certain suffixes/prefixes, which can be used to determine associ-
ation between variable subsets and to what system functionality
they pertain.

Manually constructed invariants are typically deduced by do-
main experts familiar with the system under verification. The use of
a correlation matrix was also discussed in this respect. Developers
with intuition as to which variables may compose an invariant
could leverage this matrix as a way of quickly testing this intuition.
It was highlighted that for programs comprising thousands of vari-
ables, this matrix soon becomes unintelligible. Similar to staterix

interaction, filtering correlation values by a variable was suggested
to reduce this complexity. Following a sufficiently long exploration
run, an agent may compute the correlation matrix under the current
set of observed reachable states. Once saved, we could allow users
to filter results by variable ID, again through a list of toggles or by
regular expression.

6.3 Exploration Graph
While our hypothesis concerning the usability of an exploration
graph to illustrate invariants across a state space was initially valid,
there were other applications discussed that we had not consid-
ered. All focus group participants were familiar with the role of
directed graphs as a means of system abstraction. It is therefore
understandable that depictions and generation of an exploration
graph were quickly grasped. Participant C asked for clarification
regarding what, explicitly, each node represented. Each node was,
by design, used to represent the same vector of variable valuations
that participants were familiar with in textual form. All participants
then agreed any invariants visualised in terms of an exploration
graph should be highlighted across all nodes where that property
holds, whether across the entire graph or for some sub-region. Par-
ticipant B noted that in the event no invariants were generated from
RL exploration, the graph could serve in highlighting properties
queried through manual search. This way users could could inspect
sub-regions where some arbitrary property holds and determine
why they fail to hold in others. Similarly, they could iteratively
refine such a property while visualising how well that candidate
invariant holds across reachable states.
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In addition to this, it was highlighted that current procedures for
debugging counterexample traces involve processing large bodies
of text. Participant B suggested that using our exploration graph to
illustrate error traces as a highlighted, interactive sequence of nodes
and edges, indicating paths from initial state to the point of failure
would be highly useful. Participant D noted such a tool would
provide users a sense of structure and how the program behaves
at runtime, and where that counterexample occurs in relation to
what the RL agents have observed. It was suggested users were
allowed to inspect states and their connected edges via tooltip
interaction. Node selection would produces a list of tuples mapping
variable identifiers to their state valuation, while edge selection
would produce a list of tuples mapping program inputs to their
valuation (inducing the transition). Participant B remarked that
within the exploration graph view, users could specify properties
to search for across states, highlighting nodes where the property
holds. Amock user interface incorporating these proposals is shown
in Figure 4. The default proposed view would show the complete
graph, displaying a list of candidate invariants which hold for all
reached states. Individual states could also be selected to inspect
node metrics. Participant F proposed allowing users to select an
initial state to seed further exploration. False positive debugging of
error traces is complicated, time consuming and requires specialist
knowledge. Debugging processes may be accelerated, or at least
rendered more comprehensible, with error trace abstraction to
simplify system views. If a false positive counterexample trace is
produced, the agent should be unable to reach the state of property
infraction. One proposal was to append a highlighted path from
some ultimate reachable state to the infraction state. Consequently,
we localise where the counterexample falls which may help users
narrow down causal factors.

During focus group discussions concerning the interlocking ex-
ploration graph, some participants drew attention to a small number
of densely connected nodes. Knowing the interlocking system ef-
fectively has two modes of operation, it was suggested these highly
connected points represented key states where those modes ini-
tialised. Realising that basic graph properties could translate to
some well understood aspect of the system motivated the idea of
incorporating graph based metrics. These are split into statistics
concerning the complete graph and individually selected states,
most of which may provide some indication of state “importance”.
Simple global measures such as edge and node count provide a
basic indication of system size and connectivity, as well as indi-
vidual node statistics for in and out degree. Radiality centrality
attributes values to nodes based on their connection to all other
nodes, compared to graph diameter. High valued nodes suggest the
state is frequently observed at runtime, possibly indicating some
return to default values. Graph reciprocity reflects the number of
bidirectional edges between states. Perhaps states with no recipro-
cal edges could be pruned, indicating some redundant intermediary
operations.

6.4 Agent Refinement through Participatory
Design

When discussing the staterix for interlocking programs, there ap-
peared obvious invariants in the form of solid columns. Initially

we had believed these were indicative of some redundant block of
code within the program until participant D, a lead software tester,
proposed this variable set was too large, and likely indicated poor
exploration within a sub-region of reachable states. It was then
suggested the 𝜙 coefficient, which converge over time, be used to
modify the RL reward scheme and incentivise agents to mitigate
overconfidence by disproving invariants.

An unexpected outcome of our focus group was that of partici-
pant suggestions to improve our reinforcement learning framework.
In particular, it appeared our set of visualisations were sufficient
in abstracting the complexities of agent and environment imple-
mentations such that our domain experts could leverage their own
knowledge of interlocking systems to guide state space exploration.
Primarily suggested by the software development specialists, a set
of testing procedures easily replicated by some distributed collec-
tion of agents would guide exploration along an execution path
similar to that traced by human engineers. A hybrid approach was
devised where a “master” agent follows a state sequence replicating
manual debugging while periodically spawning worker agents to
explore that sub-region, initially at random. This was motivated
by the engineers understanding of errors typically occurring at
edge cases for well understood functions, not in some obscure,
infrequently observed, poorly connected state.

7 CONCLUSION
This paper presents a novel set of visualisations for depicting in-
variants present in Ladder Logic programs, and explored how those
representations can support effective human-in-the-loop invariant
generation techniques. Our visual abstractions provided a mutual
understanding of the underlying machine learning approach, facili-
tating a participatory design process where improvements to both
agent training and human interaction were suggested. Two princi-
ple themes emerged throughout our study. First, the success of our
focus group seemed highly contingent on the passion exhibited by
users. Without their willingness to explore where human strengths
and weaknesses lie, our research reaches an impasse. Second, while
humans solving complex industrial tasks may initially desire for
manual processes to be entirely automated and obfuscated, our
work shows a clear benefit to leveraging both capabilities.
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