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Abstract
Computer vision systems are increasingly used by blind individuals
to navigate their lives, helping, for example, locate objects such
as doors or chairs. Yet these recognition systems do not work for
many personal objects a blind user might want to find, such as
keys or a special notebook. In response, efforts created person-
alized recognition systems, where individuals train their phones
to identify and locate things, like a coffee mug or white cane, us-
ing example images/videos. However, these tools are trained on
data from high-resource contexts, not necessarily reflecting In-
dia’s material culture. This paper discusses the contribution of the
ORBIT-India dataset, which extends these tools to the Indian con-
text, home of the world’s largest blind population. The ORBIT-India
dataset comprises 105,243 images from 587 videos, representing 76
unique objects. We use this experience to examine dataset collection
practices translated from high- to low-resource settings, providing
recommendations to support cross-geography dataset collection.
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1 Introduction
Artificial Intelligence (AI) has growing potential to improve the
lives of people with disabilities by removing barriers to everyday
tasks, from navigating a shop to finding one’s keys [19, 31, 40].
However, the majority of AI tools designed to support disability are
trained on datasets collected in the Global North [11, 34, 42, 44, 63],
reflecting the associated material cultures and environments. As
training data is critical to performance [42, 44, 49], this can result in
effectiveness disparities for those using these tools in other contexts.
The research literature has clearly shown that AI systems often
have poor performance for users in culturally diverse contexts in
the Global South [10, 24, 37]. This raises the question as to how
we might extend data collection efforts to include Global South
contexts.

By extending Find My Things, a teachable object recognition
system for people who are blind, to the Indian context, this paper
explores how a dataset collection protocol designed for the Global
North must be adapted to work well in the Global South. Find My
Things [74] allows people who are blind to identify and locate essen-
tial personal items, such as coffee mugs, white canes, or school bags,
by teaching their AI app with example videos. Unlike generic ob-
ject recognisers, teachable object recognisers are trained and tested
under consistent, user-specific conditions, reducing variability be-
tween training and testing data and enabling greater adaptability
to the user’s context without cross-user interference [39].

Despite Find My Things’ potential for localisation, previous
research has shown that object-recognition systems fail in low-
resource settings across the Global South due to differences in home
environments, object availability, and camera usage behaviours [37].
These failures point to the need for training data that better reflects
the lived realities of diverse user populations. In particular, systems
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trained on data collected by sighted individuals frequently under-
perform for blind or have low vision users, whose image data often
includes challenges like low lighting, motion blur, and partially
framed objects [16, 20, 32, 33, 50]. To develop object recognisers
that are truly usable and inclusive, there is a need to train on a
wider distribution of data to ensure people in a range of global
contexts are served.

In this work, we introduce the ORBIT-India Dataset [36], the
first teachable object recognition dataset produced by blind or have
low vision data-collectors in India. This dataset consists of 105,243
images of 76 daily-use objects, contributed by 12 data collectors
between July and December 2023. It has been annotated for use in
a machine learning pipeline. The annotations capture whether an
object is out of frame, and any personal identifiable information
(PII) present in the images have been blurred and annotated accord-
ingly. With ORBIT-India dataset creation, this paper aims to answer
the following research questions: A) How does the disability-first
dataset collection protocol, originally designed for the Global North,
need to be adapted for data collection in resource-variant contexts
in the Global South, like India? B) What are the characteristics of
collected data (visual, contextual, and environmental) and experiences
of data collectors? and lastly, C) What lessons are learned from this
intervention for future accessible AI dataset collection translation
from the Global North to the Global South context? In answering
these questions, we make the following contributions:

• The ORBIT (Object Recognition for Blind Image Training)-
India Dataset – a new dataset and associated documentation
and descriptions to help train teachable object recognition
systems for South Asian contexts;

• An analysis of the changes needed to shift a protocol from
a Global North context to a Global South one, including:
adaptation of data collection tools and the experiences of
data collectors;

• A set of broader recommendations to support cross-geography
dataset collection.

2 Prior Work
Here we discuss prior efforts related to data collection: (a) for teach-
able object recognisers involving blind or have low vision individ-
uals; and, (b) for AI and other data-intensive technologies within
the Global South.

2.1 Dataset Collection for Personalised Object
Recognition with People Who Are Blind or
Have Low Vision

Teachable object recognition enables people who are blind or have
low vision to ‘teach’ AI systems, using a few examples, to recognise
and find their personal objects [8, 39, 67, 74]. With teachable ob-
ject recognisers, users can ‘add’ new objects, including those that
are culturally specific and not usually recognised by generic ob-
ject recognisers. Additionally, users can distinguish between items
that are hard for them to differentiate by touch but are visually
distinct. Such systems overcome the limitations of generic object
recognition which only works for a small, fixed set of items [39].
Teachable object recognition offers opportunities for significant
personalisation, regardless of context.

However, the training data used to create teachable object recog-
nition systems does influence how well they can adapt to new
content. For example, prior work has shown that systems trained
on data largely gathered from sighted people do not work as well
for users who are blind or have low vision [24, 37, 47, 67]. Images
taken by people who are blind or have low vision tend to be blurrier,
with objects that may be partially or completely out of frame and in
insufficient lighting conditions, a phenomenon first characterized
with the VizWiz visual question and answer dataset [16]. Secondly,
certain objects (e.g., white cane, braille stickers, talking watch) used
by people who are blind or have low vision are either not found
or little-represented in datasets created by sighted people [33, 50].
Prior work on image dataset collection with individuals who are
blind or have low vision has also reported several other challenges
— including instances of personal identifiable information (PII) be-
ing captured in images, often unknowingly. For example, studies
have estimated that up to 10% of images collected by blind users
may contain such PII, highlighting additional privacy and curation
concerns during dataset creation [16, 32]. Similarly, the adaptation
of a teachable system to a highly different material culture is also
likely to require new training data, motivating the dataset reported
in this paper.

The ORBIT dataset [50, 67] was the first realistic dataset for
teachable object recognisers that was collected with data contribu-
tors who are blind or have low vision, mainly in the UK and Canada.
The dataset contains 3,822 videos of 486 objects recorded using iOS
devices (e.g., iPhone or iPad) by 72 people who are blind or have
low vision. It shows objects in a wide range of realistic conditions,
including when objects are poorly framed, occluded by hands and
other objects, blurred, and in a wide variation of backgrounds, light-
ing, and object orientations. In few-shot machine learning, models
are trained to recognise completely novel objects from only a few
examples, and teachable object recognisers neatly capture few-shot,
high variation scenarios. An empirical study conducted on the
ORBIT dataset benchmark [50] showed that training on existing
few-shot learning datasets is not sufficient for good performance
on the ORBIT benchmark, thus pushing innovation forward in
few-shot as well as real-world recognition tasks. Though this paper
does not evaluate the usefulness of the ORBIT-India dataset for
teachable object recognition models, its collection was inspired by
the promising research directions opened up by the ORBIT dataset.
We describe the dataset’s characteristics, also sharing insights into
the data collection process, which may serve as a valuable reference
for future work in this area.

Theodorou et al. [67] also talk about the disability-first approach
taken for ORBIT dataset collection, prioritizing disability experi-
ences above all. It employed a tool for data collection that enabled
recording videos (instead of pictures), making the process more
accessible for data contributors. In this paper, we describe the adap-
tation of this data collection infrastructure to the non-western and
resource-diverse Indian context.

2.2 AI Dataset Collection in the Global South
TheGlobal South, home to significant and rapidly growing economies
such as Nigeria, India, and Vietnam [66] with increasing access to
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digital technologies, presents a crucial yet often overlooked con-
text in AI development. Predominantly designed for the Global
North, these technologies contribute to AI and performance divides
affecting underrepresented communities, largely due to their lim-
ited involvement in AI system development [14, 29, 51, 57]. Data
is the new ‘oil’ and the structural power asymmetries embedded
within the design and development of AI systems and the extrac-
tive costs associated with it, is extended to the creation and use
of datasets used to train such AI systems [45]. The growing social
movement of "design justice" studies how design reproduces, is
reproduced by, and/or challenges the matrix of domination (white
supremacy, hetero-patriarchy, capitalism, and settler colonialism).
To counter this, Sasha Costanza-Chock suggests aiming to ensure a
more equitable distribution of design’s benefits and burdens [21, 22].
Currently, the Global South bears this burden disproportionately,
despite being the biggest global contributor to data-related work
[30, 38].

To bridge this growing AI divide [60, 75], there is a growing
emphasis on including under-representative communities within
the AI development pipeline. Data feminism for AI systems, a
feminist AI framework proposed by D’Ignazio & Klein [45], ad-
vocates for an intentional integration of pluralism by designing
community-centred methodologies for participation and the visibil-
ity of marginalized labor. Our dataset protocol sets the beginning
of exploring this pluralism within the dataset ecosystem for object-
recognition technologies, uncovering the challenges and potential
opportunities for using protocols developed for people in differ-
ent contexts to be used in the global south. This step is necessary
for rapid replication of the data collection infrastructure in varied
contexts.

In recent years, several successful attempts have been made to
create better representative datasets for various AI systems. The
Dollar Street dataset, for instance, featuring 38,479 images of ap-
proximately 250 household items, collected from homes across 63
countries in Africa, America, Asia, and Europe [28], shows the
variation in object appearance, branding, and placement within
homes, with changing socio-economic and cultural context. DOSA,
a community-generated dataset of 615 social artifacts from 19 In-
dian subcultures [63] aimed at improving the cultural awareness
of Large Language Models, revealed the models gravitate towards
web-dominant narratives when presented with “less common” arti-
facts rooted in marginalized and underrepresented cultures/regions.
This also underscores the critical role of securing and preserving
local metadata, such as object-labels as provided by data collectors,
to ensure the objects are represented to reflect the authentic mean-
ing and use within the community. Other examples of diversifying
AI datasets for under-represented cultures include Masakhane [55],
World Wide Dishes [48], and several more [9, 52, 53].

The Global South also encompasses the majority of the disability
community, offering opportunities for social inclusion via AI. India
alone accounts for the largest share of the world’s blind and low-
vision population [54], a demographic marked by socio-cultural
diversity and varied access to resources. Various previous exam-
ples of tapping into the community’s potential include [73] par-
ticipants from the visually disabled community in India—many
of whom were new to digital devices and literate mainly in lo-
cal languages—who achieved a digitisation accuracy rate of 96.7%

when transcribing handwritten Marathi and Hindi words using
an Android app, outperforming crowd work platforms. Further-
more, studies also explore various methodologies for data work and
community engagement [72]. However, this growing trend of data-
related engagements with and collaborations in the Global South
also raises ethical concerns regarding data collection and practices,
such as ensuring data privacy and security within technological
infrastructures, adopting culturally sensitive and participatory ap-
proaches to avoid reinforcing existing power imbalances and biases,
and carefully documenting the provenance, creation processes, and
intended uses of machine learning datasets to proactively mitigate
discriminatory outcomes [25, 29, 62].

Our work adapts object-recognition probes, initially designed
for the US and Canada [67], to the technological and infrastructural
realities of India. In this paper, we report on the adaptations, while
also critically examining nuances of our findings and proposing
directions for AI dataset collection within the diverse multicultural
landscape of the Global South. In the following section, we outline
the specific modifications made to the data collection protocols and
tools for ORBIT-India dataset collection.

3 ORBIT-India Dataset Collection
3.1 Data Collection Protocol
Data collectors were asked to use a modified version of the Find My
Things app [74] to collect example videos of ten personal items that
they might want to use a phone to find at a later point. These videos
were screened for personally identifiable information (PII) and then
added to the dataset, which participants were told would be open-
sourced to enable technology companies and researchers to better
adapt their work to disability contexts in India. Upon completion,
data collectors could share their feedback on the data collection
tools and protocol, in an audio-only one-to-one semi-structured
interview. As per the participant’s preference, the interviews were
conducted over telephone/Zoom/Google Meet, and in Hindi or
English. Each interview lasted for roughly 45-60 minutes and was
audio-recorded upon participant’s consent. As compensation, data
collectors were offered twomodes to choose from: either six months
of exclusive access to the finding feature in the Find My Things app
or a one-time monetary payment of Indian National Rupee (INR)
500 (~GBP 5) made via Unified Payments Interface (UPI) 1. Those
who participated in the feedback interview were offered additional
compensation in their respective chosen modes (i.e., either three
months of access to the finding feature or a UPI payment of INR
300 (~GBP 3)). The ethics approval for this work was obtained from
Swansea University ethics review board. The dataset was collected
between July and December 2023 in India and published at [36].

3.1.1 Object Selection. To ensure real-world relevance, partici-
pants were asked to select ten personal items they frequently use
and often misplace—objects a phone-based assistive system would
realistically help locate. While the modified Find My Things app
provided suggestions, participants were encouraged to include cul-
turally specific or locally relevant items to reflect Indian material
culture and expand the diversity of object types. To support better
1Unified Payments Interface (UPI) is a secure instant funds transfer mechanism be-
tween two bank accounts in India, using UPI id, ensuring privacy of the parties involved
[70]
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model generalisation, we encouraged participants to include ob-
jects that varied in size, shape, and texture—from small items like
keys and pen drives to medium-sized ones like handbags and water
bottles.

3.1.2 Data Collection. The Find My Things app was used to record
videos, using the specifically designed technique for users to capture
the right video examples for training an object recogniser [50].
Following the Phase II ORBIT protocol, each object was recorded
in eight short videos (15–20 seconds each):

• Six training videos, shot in isolation on uncluttered surfaces
(e.g., table, chair, floor), providing clean object views.

• Two testing videos, recorded in natural contexts, with the
object placed among other items in typical storage or usage
locations.

Although the underlying model required only four training and
one testing video per object, participants were encouraged to record
the additional videos to address common issues, such as occlusion
or poor lighting. This redundancy minimized the need for resub-
missions and improved dataset robustness.

3.1.3 Data Quality Check. All videos underwent a two-stage veri-
fication process:

• Quality checks ensured object visibility, framing consistency,
adequate lighting, and minimal occlusion.

• Privacy checks flagged and blurred any personally identifi-
able information (PII), including faces or documents, using a
polygonal masking approach [32]. Each framewas annotated
for PII presence and object visibility to support downstream
model filtering and training. We discuss the data quality
check procedures in detail later in the paper.

If issues arose, participants were asked to re-record specific
videos. Support included daily email reminders, tutorial videos
(in Hindi and English), and optional 1:1 or group assistance via
phone or Zoom. More details on data quality check and dataset
preparation are discussed in Section 3.4.

3.2 Adaptation of Find My Things for
ORBIT-India dataset collection

To support dataset collection in India, we adapted the Find My
Things app [74], previously used in UK and Canadian deployments
[67, 74], making key modifications based on local context and ac-
cessibility needs.

3.2.1 Android Porting. Given that over 90% of smartphone users
in India use Android devices [5, 35], we ported the app from iOS
to Android (min OS 8+, API level 26+). While this increased reach,
it also introduced trade-off, such as lower average camera quality
and limited accessibility APIs. For instance, unlike iOS, Android
does not support automatic flash light activation under low-light
conditions, potentially impacting video quality.

3.2.2 Feature and Interface Updates. In the Find My Things app,
we added screens for: a) Recording testing videos, b) Uploading data
to secure cloud servers, c) User authentication. All app content was
localised to English (India) and Hindi, a language spoken by ~45% of
Indians [68], enhancing usability for native speakers. Instructions

were contextualized with culturally relevant examples and included
step-by-step guidance, object suggestions, and filming tips. Figure 1.
shows screenshots from the English version of the Find My Things
login screen and filming instructions to record a training video.
Lastly, we stored and accessed the collected data through a secure
cloud storage service, using cloud-based functions to manage user
authentication (via user IDs) and other back-end processes.

3.2.3 Data Collection Workflow. After logging in with a unique
user ID, the user enters an object name (which served as its la-
bel) and follows the app’s audio-guided instructions. Each object is
recorded in eight short videos: six training videos in isolation (e.g.,
object on floor, table), and two testing videos in realistic settings
(e.g., mug on a crowded kitchen counter). During training video
capture, the user begins by placing the object on a clear surface and
positioning the phone close to the object. Upon detecting the object,
the app provides an audio cue, after which the user moves the phone
away while stepping back, capturing different angles. Throughout,
audio-haptic feedback guides the user on object visibility, fram-
ing, and video duration. Each video lasts 10–15 seconds. Testing
videos followed the same technique, with the object embedded in
cluttered, everyday environments. Once all videos were recorded,
users uploaded their data to our secure, password-protected cloud
storage; local files were deleted to conserve device storage.

The first author maintained regular email check-ins with data
collectors throughout the data collection period, providing consis-
tent support with queries regarding filming instructions and trou-
bleshooting app or device issues. We conducted online audio-only
meetings on Zoom, lasting lasting 1.5–2 hours each, during which
interested data collectors joined from the comfort of their homes
and collaboratively collected data for one or two objects. These
weekend “Datathons” were designed to encourage participation,
foster a sense of community in an entirely online data collection,
and provide opportunities for peer interaction, troubleshooting,
and real-time support from the research team. Upon submission,
the data was reviewed within 24–48 hours, and feedback on data
quality and, if required, resubmission requests were made promptly.
Prior work notes that data collectors who are blind or have low
vision appreciate feedback on collected visual data [43, 67]. After
each review, participants received a brief visual summary of their
submission, including comments on data quality (for example, light-
ing conditions, object positioning, scenario setup) and whether the
video met the dataset requirements. When it did not, participants
were asked to re-record and were explained the reasons, for exam-
ple, hand or body occlusion or the object being out of frame for
more than half of the video length. Additionally, if prominent and
multiple PIIs were present throughout the video, such as multiple
human faces and bodies, that would require extensive masking,
participants were asked to re-record. Such considerations were
made to balance the privacy requirements with the effort taken by
the data collectors. The detailed review feedback was intended to
help participants assess their data quality and understand which be-
haviours to repeat or adjust. Each submission was used to reinforce
effective practices, highlight areas for improvement, and provide
tips for better-quality recordings. For instance, data collectors were
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Figure 1: Screenshots from the Find My Things app: (a) Login screen for user to enter their User ID, (b) Screen with instructions
to place the target object in a clear location before recording a training video, (c) Screen with instructions to bring the camera
very close to the target object to start recording a training video.

reminded to avoid occlusions (e.g., hands or body), maintain ade-
quate lighting, and prevent accidental capture of private or sensitive
content.

3.3 Data Collectors
A total of 12 data collectors were recruited from different parts of
India. Nine identified as men, and three as women, with average
age of 27 ± 5.63 years. The majority of our participants (n = 11)
came from tier-I Indian cities, as per the Government of India’s
three-tier city classification system [69] where tier-I cities have
higher populations, more developed socio-economic schemes, and
better technological infrastructure compared to tier-II and tier-III
cities. Six data collectors held postgraduate degrees, four under-
graduate degrees, and two had a high school diploma. Ten data
collectors were full-time professionals and two were students. All
data collectors, except P1, used the Find My Things app in English.
The majority came from low-to-middle income families: five had
annual family incomes below |5,00,000 (~$6,000), four were in the
|5–10,00,000 range, and three were in the |10–25,00,000 range. The
median household income in India is around |5,00,000 [4]. Detailed
demographic data is shown in Table 1.

Data collectors were recruited via pan-India email lists andWhat-
sApp groups focused on discussing disability rights, job opportuni-
ties, and assistive tech for blind or low-vision communities. Eligibil-
ity criteria included: being 18 or older, legally blind or having low
vision (with no other disabilities affecting participation), owning an
Android smartphone (OS 8+), having ~700MB free storage, regular
use of TalkBack for a minimum of over a year, and proficiency in
English or Hindi. Data collectors also required ~600MB of internet
data to download the app and upload their recordings, though inter-
net access was not needed during the actual data recording process.

Recruited data collectors gave informed consent and completed a
short online survey capturing demographics, vision history, and
usage of object recognition apps such as Lookout or Seeing AI.

3.4 Dataset Preparation for Public Release
The ORBIT-India dataset structure, including the organization of
training and testing data and the associated annotations, was aligned
with the original ORBIT dataset to ensure compatibility with ex-
isting pipelines and tools [50]. This alignment allows researchers
and practitioners to extend AI models trained or evaluated on OR-
BIT to ORBIT-India without major pre-processing changes. It also
supports reproducibility and makes the dataset readily usable for
training and benchmarking computer vision models. The first au-
thor conducted all data quality checks and dataset preparation.
Below, we briefly outline the process, organized into three main
stages.

3.4.1 First stage: Data Categorization. The videos for each object
were divided into two folders: ‘clean’ (for training data) and ‘clutter’
(for testing data). To preserve the authenticity of the data as envi-
sioned by our data collectors, videos were placed into the categories
they themselves intended. This means the dataset may contain im-
ages in the clean folder where one or more additional objects appear
alongside the object of interest, and images in the clutter folder
where no auxiliary objects are present. In doing so, the dataset
reflects the mental models of the data collectors, supporting better
model adaptability to realistic scenarios.

3.4.2 Second Stage: Labeling Instances of Personally Identifiable
Information and Cases Where the Object Is Out of Frame. Upon
data categorization, the next step involved identifying video data
containing potential elements of Personally Identifiable Information
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Table 1: Demographics and the dataset contributions by each data collector, with participants’ original object labels. Abbrevia-
tions used a) for level of vision impairments (TB: Totally Blind; PS: Partially Sighted), and b) history of vision impairment (BB:
Born Blind; LB: Late Blind).

P.Id. Age Sex Level of VI
(TB/PS)

History of
VI (BB/LB)

Smartphone
use (in yrs.)

Number of
Objects

Number of
images Object Labels

P1 24 M TB BB 6 10 14122
earphone, sunglasses, water bottle, Steel glass,
pin stapler, computer keyboard, mobile phone,

cap, coffee mug, eye glasses

P2 26 M TB LB 11 2 3108 earphone, airpods pro

P3 28 M PS LB 10 11 10991
Box, Bangle, Black knife, Marker Pen,

Tooth brush, Comb, White cane, Talking watch,
Swich board, Spectacles, knife

P4 30 M TB LB 9 13 17850
headphone, basket, trofi, Amazon fire stick remote,
wrist watch, belan, toy car, tooth brush, comb, cain,

little toy car, trofi 1, hair clucher

P5 18 M TB BB 6 9 13936

Oneplus type a to type c cable red colour,
Alexa third generation, perfume bottle,
charger brick, wireless earphones, keys,
spectacles, laptop, square shaped pillow

P6 29 M TB LB 11 1 1554 spectacles

P7 28 W TB BB 9 9 14676 flask, ear phones, speaker, charger, pen drive,
cane, hand bag, wallet, scissors

P8 37 M TB BB 20 1 1547 bottle

P9 26 W TB BB 8 11 13666

headphone, earphone, glass container,
emergency home phone mobile phone,

currency note, laptop charger, mobile phone,
mobile phone charger, towel, hair oil, laptop

P10 19 M TB BB 8 7 10891 bath towel, laptop charger, phone charger,
house keys, car keys, wallet, bag

P11 36 W TB BB 4 1 1531 case

P12 30 M TB BB 7 1 1371 Spectacles case

(PII) and instances where the object of interest was completely out
of frame, i.e., where not a single pixel of the object appeared. This
step was necessary both because PIIs may compromise the privacy
and identity of data collectors, and because out-of-frame instances
can lead models to produce false positives by attempting to detect
an object that is not present. Given the sensitivity of PIIs and the
need for accuracy, all instances were identified via careful manual
review rather than automated methods.

Two rounds of visual review were conducted on all videos, with
each frame carefully screened. A total of 88 videos were flagged for
potential PIIs. These were stored separately for further discussion
among the authors to determine (a) whether the item in considera-
tion truly constituted a PII and (b) the appropriate masking strategy.
The review process prioritized retaining as much data as possible
while balancing the masking effort against the video’s value for
model training. Some videos were ultimately deemed PII-free when
the suspected content remained unidentifiable even at maximum
zoom. Only one video was discarded, due to severe low lighting
and multiple PIIs throughout, which would have required extensive
editing. During the analysis, we categorized PII found in the dataset

in accordance with the VizWiz-Priv framework [32]. The detected
instances of PII in the dataset can be categorized into a) text-based
PII, such as certificates and ID cards; b) object-based PII, such as
family photographs or labelled belongings; or c) ambiguous PII,
whose sensitivity depended on context. In total, 68 videos were
found to contain PIIs and the identified PII items were masked using
Adobe Premiere Pro.

In prior work, like [32], researchers have either blurred entire
regions containing PIIs or selectively blurred only the sensitive
elements. Although selective blurring is more time-consuming, it
offers a better balance between privacy protection and data preser-
vation by retaining contextual details and the overall semantics
of the scene. For example, rather than blurring an entire family
photograph, we manually outlined only the sensitive portions and
applied masking. When PIIs appeared in dense clusters, five or more
items in close proximity, we blurred the entire region. Although the
impact of blurring on model performance is not fully known, such
techniques are widely accepted as best practice in privacy-sensitive
dataset curation and our approach is consistent with practices used
in the ORBIT and VizWiz datasets [32, 50]. After masking PIIs, a
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marker labelled “PII” was added in Adobe Premiere Pro to each
frame containing sensitive content. These markers serve as time-
stamped annotations, so each “PII” marker recorded the exact frame
location along with its label, and this information was exported as
a CSV file for each video.

Similarly, we identified frames in each video where the target
object was completely out of the frame. Nineteen videos contained
at least one such instance, and for each, a marker labelled “OOOF”
(Object-Out-of-Frame) was added and saved in a CSV file.

Alongside the visual analysis, the first author maintained a man-
ual record of unique elements observed in the videos, including
distinctive object characteristics (e.g., shape, size, branding) and
their relative positioning within the environment. These records
were used to conduct a comparative analysis between the ORBIT-
India and ORBIT datasets to examine cultural and contextual nu-
ances reflected in object appearance, auxiliary items, and household
backgrounds. Due to the larger size of the ORBIT dataset, a quali-
tative sampling approach was adopted to obtain a representative
overview of typical visual features. Specifically, 100 images were
randomly selected from the ORBIT dataset, comprising 30 from the
clean folders (training data) and 70 from the clutter folders (testing
data). These images were jointly examined and discussed among
the author team to identify recurring patterns such as household
layouts, object types, and contextual characteristics. The interpre-
tation of these differences were informed by our research team’s
diverse ethnic backgrounds and lived experiences. The resulting
observations are detailed in the following section.

3.4.3 Third stage: Compiling Data and Data Annotations. Following
the ORBIT dataset annotation format, each video in our dataset
was annotated with a JSON file containing the keys: object_not_
present_issue and pii_present_issue. For videos with PII and/or
OOOF markers, the corresponding key values were set to true;
otherwise, they were false. All videos were then split into individual
JPEG frames, and a final visual review was conducted on every
image to confirm correct masking and labeling of PII and OOOF
instances. Annotation files were stored in a separate folder within
the dataset.

Total number of images, across the clean and clutter folders,
for each object and each data collector, is summarized in Table
1. The final dataset size is 5 GB and was released on July 1, 2024
[36]. In next section, an overview of the collected dataset is shared,
including the general characteristics of the data and a simultaneous
comparison with its parent dataset, ORBIT [50, 67], based on our
object descriptions, images in the dataset, and findings described
in [50, 67].

4 The ORBIT-India Dataset: An Overview and
Comparison with the ORBIT Dataset

The ORBIT-India dataset contains a total of 105,243 images of 76
commonly used objects, collected by 12 data collectors who are
blind or have low vision in India. The full annotated dataset can be
found at [36]. Out of the total images, 75,994 belong to clean sce-
narios and 29,249 belong to clutter scenarios. On average, each data
collector submitted 8,770.25 images. These images were extracted
from a total of 587 videos, with an average of ~180 frames extracted
per video.

4.1 Objects in the dataset
The ORBIT-India dataset comprises 76 total objects, representing
36 unique items frequently used by participants in their everyday
lives. A complete list of all objects is given in Table 1. For each
object, we collected an average of 5.58 clean videos and 2.14 clutter
videos. Of these, 68 objects meet the criteria for training few-shot
learning models, having at least four clean and one clutter video.
The remaining eight objects—five with no clean videos and three
with no clutter videos—do not meet the minimum threshold for
few-shot training but still contribute valuable contextual informa-
tion, such as background settings, object placement, and spatial
relationships.

On average, each data collector contributed 6.33 objects, slightly
fewer than in the original ORBIT dataset (eight objects per data
collector). Although data collectors were instructed to collect ten
objects each, the final number varied because participants dropped
out due to time constraints and unforeseen personal circumstances.
In such scenarios, participants were compensated for each object
data submission. Figure 2 shows example images from the dataset.

4.2 Cultural and Contextual Uniqueness
While many objects overlap with those found in the Global North
(e.g., ORBIT), several objects in our dataset reveal the distinct cul-
tural practices, consumer preferences, and socio-economic con-
ditions specific to India. For instance, objects like hair oil, a sta-
ple linked to South Asia’s Ayurvedic heritage, and bangles, repre-
sent a culturally significant accessory. Other examples—such as a
‘OnePlus type-A to type-C red cable’—reflect local branding and
consumer preferences. Even globally common objects take on dis-
tinct forms: for instance, steel glasses (as shown in the last image
in Fig. 2), widely used for drinking water in India, especially in
low-to-medium income households, differ from ceramic or glass
alternatives typically found in Western households. This cultural
embeddedness of objects resonates with the Dollar Street dataset
[28], that shows how the same object looks different depending on
where one lives.

The dataset also highlights differences in household organiza-
tion of the objects. For instance, in contrast to Western household
norms, toothbrushes are sometimes stored near the kitchen sink
in India. This practice is shaped by the collective Asian culture of
living in joint families, where space is shared more intensively than
in nuclear households, and also reflects resource constraints, such
as the possibility of a single busy bathroom, making it practical to
keep certain essentials elsewhere for easy access. Examples of such
data, embodying cultural patterns of cohabitation and adaptation,
improve cultural awareness of vision systems by better understand-
ing how objects relate to their environments across cultures [24, 53].
The inclusion of Indian currency notes in the dataset also adds to
the region-specific visual data.

The cultural uniqueness also extends to the local, or more person-
able, naming of objects. For example, a rolling pin labelled as ‘belan’
and cushion as ‘square-shaped pillow’. Unless it was misleading, we
retained the object labels as provided by the data collectors, to pre-
serve the authenticity of data. For example, ‘Trofi’ for trophy, ‘Cain’
for cane, and ‘Hair clucher’ for hair clutcher. One participant la-
belled their eyeglasses as ‘lamps’ to bypass TalkBack-related typing

object_not_present_issue
object_not_present_issue
pii_present_issue
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Figure 2: Sample images from the ORBIT-India dataset. Top row, from left to right: Training image for i) coffee mug, ii) bangle,
iii) trophy, iv) handbag. Bottom row, from left to right: testing image for v) perfume bottle, vi) hair oil, vii) water bottle (with a
manually blurred photo frame behind), and viii) steel glass.

issues and later requested a change, which we applied. Capturing
such variations in data allows the systems to learn from natural
inconsistencies, misspellings, and culturally-influenced naming
practices [37, 50, 63], and improves model robustness.

Technological preferences also diverge. While the ORBIT dataset
includes smart home devices like Alexa speakers, Apple AirPods,
and Amazon Fire TV remotes, ORBIT-India reflects the prevalence
of Android and OnePlus devices, which are more accessible and
affordable for much of the Indian population. Unlike ORBIT which
includes a few large-scale objects (e.g., front doors, cars), the ORBIT-
India dataset is limited to small to medium-sized items. Two partic-
ipants who attempted to capture large-sized objects (e.g., a bicycle),
found it difficult to frame them effectively.

We made more attempts to preserve the authenticity of the data
while balancing intent with model requirements throughout the
analysis process. For instance, despite the frequent low-lighting
issues, all images were left un-edited to represent the authentic
middle-class Indian household scenarios. This also represents a real-
world use-case scenario, when images are taken from lower-end
Android phones, and needed for ensuring better generalisation of
the model beyond the (comparatively) better iOS-quality images.
Similarly, clutter and clean classifications of the data were also
retained to reflect each data collector’s mental model. In cases
where cluttered videos were submitted separately (requested as
part of the video review process), we reassigned the original labels
to maintain consistency.

Taken together, the dataset provides valuable training data for
building AI systems that reflect the diversity of Indian material
culture. It captures: a) scene complexity consisting of diverse back-
grounds and semantic cues, b) object relationships (co-occurrence,
positioning, occlusions, and angles), c) environmental conditions

like brightness and lighting, and d) cultural context that includes
region-specific object use and affordances.

4.3 Presence of the object-of-interest in the
frame

Out of 105,243 images, the object of interest was completely out of
frame for 1,170 images (approximately 1.11%). Of these, 773 images
belong to clean scenarios and 397 images belong to clutter scenarios.

During the analysis, we found major reasons for the object to be
found out of frame were either hand occlusion or sudden camera
movements, often unintentional, as confirmed by the data collectors
later, but reflect real-world scenarios where users struggle with
positioning objects for recording. In few-shot learning, annotated
out of frame object images help the model focus on the true features,
instead of, for example, the background, thus act as explicit nega-
tives for the model to learn to distinguish between object present
and absent scenarios. This, in turn, improves the generalisability of
the model to novel settings [13, 33].

4.4 Occurrence of Personally Identifiable
Information

Of the 105,243 frames in the ORBIT-India dataset, 3,995 (3.80%) were
found to contain one or more instances of personally identifiable
information (PII). This number is notably less compared to other
datasets (e.g., VizWiz [16] had ~13% images with PII, leading to
VizWiz-Priv [32]). We observed more instances of PII in clean video
contexts (2,093 frames, or 2.75% of 75,994 clean frames) than in
cluttered ones (1,902 frames, or 6.50% of 29,249 cluttered frames).
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5 Experience of Data Collectors with Using the
Find My Things App

Ten data collectors shared their experiences with using Find My
Things app for data collection in the feedback interview. The re-
maining two (P6 and P8) did not participate due to time limitations.
Three interviews (with P1, P4, and P10) were conducted in Hindi,
later translated to English. The interview translation and transcrip-
tion was manually conducted by the first author. For data analysis,
thematic analysis [18, 65]. protocol was followed: the first author
familiarised herself with the transcripts, systematically generat-
ing initial codes from relevant quotes resulting into a preliminary
code-book. All authors discussed the relevance and relationship
between the codes and the emerging thematic patterns. The final
stage involved defining and producing the themes, resulting in a
structured final code-book with clearly defined themes and their
respective codes.

The data collectors were asked about the process and experi-
ences with data collection, such as the thought process behind
object selection, filming videos, following instructions, and creat-
ing scenarios for shooting videos. Data collectors had access to the
application for an average of three weeks. Data collection was con-
ducted across multiple sessions, during which participants typically
collected data for one to two objects per session. Recording a single
object—including the time needed to set up scenes—required an
average of five minutes. The entire data collection process averaged
3.5 hours per participant (with a maximum of five hours). Two of
the three data collectors (P3, P4, and P8) with access to the Find
My Things app’s finding feature were interviewed. Although none
had used the feature, they appreciated the application’s concept. P4
said, “Find My Thing is a good thought...because the greater hardship
a visually impaired faces is to find his own things. And one cannot
always depend on someone else who will find my things for me, while
wasting his time...Of course, there are ample applications like Google
Lens, Lookout, they do similar kinds of things, but they cannot iden-
tify particular items, where we cannot have the option to record our
things, upload it, and they will help us finding it back. So, in that
sense, it’s a unique application.” Data collectors appreciated the app
in making the filming process accessible, and we detail out their
feedback below.

5.1 Instructions for Filming
Participants found the filming instructions particularly helpful. For
example, P2, who uses an iPhone for its accessibility features, was
surprised by the accessibility embedded in an Android app.

“Those audio cues and the initial instructions were help-
ful. We don’t get a lot of details whether you know the
object that you are recording whether you know if it is
exactly in the frame whether you know it is in center
or is it in the right hand side of the frame or on the
upper side of the frame so that information like in no
application that is available where exactly the object
is.”

Similarly, P4 found the step-by-step instructions guided him to
hold the phone correctly, frame the object for the camera lens, and
enabled him to record videos independently for the first time. He
noted, “Whenever I was not able to point accurately, within seconds

it was guiding. The time we lose our focus, we won’t be able to record
properly, so that helped me a lot.”

Three participants had prior experience recording videos, which
helped them navigate the process more easily. Except for two, most
had also used an object recognition app before, which they felt
made framing easier. As P3 said, “The Lookout application is very
similar to this application... because it tells us to move your phone
right, move your phone bottom more, take your phone up, go away
and come close so every instruction can be given to us through the
camera. So recording video was actually not a difficult task for me.”

5.2 Object Selection
We encouraged participants to share their thought process when
selecting objects. Participants put considerable thought into object
selection. Their prior experiences with using object-recognition
apps also influenced their choices, considering both size and per-
sonal relevance. While they were instructed to choose personally
relevant items, many also considered objects important to the wider
community. Some even discussed with friends and family members,
often sighted, before deciding. P7 explained their process: “I thought
there are different types of dresses, right? What is today with me may
not be there in the market itself tomorrow. . . also like the exact same
dress, the pattern. So it’s really going to be useless if I just record a
dress. So, we were just on brainstorming calls with my friend, I just
wanted something that everybody would have, and they would lose
and they can’t get it immediately.”

Some tried recording large objects (such as a bicycle) but strug-
gled due to lack of instructions or framing issues. Others intention-
ally avoided large objects, feeling it was riskier. For example, P3
preferred smaller items, while P1 tried larger ones like an almirah
(cupboard), sofa, and table but found the app less effective. Some
participants had difficulties with very small objects, such as a pen
drive (P7) or a bindi (P9). P4 deliberately recorded small objects,
like toy cars, noting that even sighted people struggle to find them.
Some participants also recorded cherished objects. P4, for instance,
recorded toy cars belonging to his son, as well as his own trophies
(with PII blurred). A few avoided sensitive objects to protect pri-
vacy. As P7 said, “I actually thought of car keys and house keys. I
don’t know why, but I was worried about the key number. What if it’s
visible, right?” Several found it easier to record away from family
to avoid distractions or accidental appearances in videos. As P4
explained, “Most videos I was able to record when my kid was not
around. Whenever I make videos, or focus, he will suddenly take the
phone or the object and run away.”

Some participants recorded culturally specific objects, such as a
belan (rolling pin). As P4 noted, “I wanted to try something that is
fully ours, and used only in India. Like, the app would call it [belan]
a stick but its shape is a bit different. It needs to recognise it.” P4
also emphasized precision in labelling: ‘‘For a few objects I tried
writing specifically, like I wrote wrist watch for my watch, because a
watch can be a wall watch or table watch. Same for Amazon remote,
because remotes are of different types, right? The suggestion for the
application is not technically clear but like how Be My Eyes tells you,
if everything gets developed like this then it will be good.”
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5.3 Creating Scenes
Depending on the context, participants either created cluttered
scenes or placed objects in natural settings. This helped avoid cap-
turing PII in the frame. Some experimentedwith surfaces to improve
accuracy. For instance, P4 avoided recording on tiled floors, which
triggered app errors, and used a mat instead. P3 used a whiteboard
to reduce patterned backgrounds. P9 recorded videos in the dark,
hoping the app would learn to recognize objects in low light. Once
a lighting prompt was added, participants like P2 found it helpful
when recording in corners or sofa crevices.

Few participants mentioned taking PII into account while select-
ing scenes. P7, for instance, did not record videos of keys (house
keys and car keys) due to the possibility of finding personal details
on the keys. Similarly, P4 mentioned, “I had to pay attention that
no such thing gets captured that shouldn’t be, because ultimately, it
was our room. Like privacy-related, some pictures are not clicked. I
did try for that.”

Ensuring well-lit conditions also played a role in selecting lo-
cations for shooting videos. Data collectors shot in familiar envi-
ronments like their house or office spaces, and were aware of the
locations with better lighting. P7 said, “I know what my was room’s
layout. So I made sure that the lights were on wherever it’s dark. And
the other side I knew where the window is, that’s how I ensure that
the lighting was proper.” The in-app alert for low-lighting condi-
tions also helped data collectors. For instance, P1, who often forgets
to turn on lights, followed the app’s prompt for creating well-lit
conditions for filming.

5.4 Overcoming Recurring App or
Device-Related Issues

Six out of 12 data collectors reported issues with battery drainage
and phone heating. Since the app used the camera continuously,
and participants often kept the internet on for notifications, they
began switching it off upon our instructions. Battery issues were
also common during ‘Datathons,’ where participants used the same
device for multiple apps at once. P1 said, “the phone would switch
off when battery drainage was too much or heating. Like even during
the Datathon, the hotspot was on, then the camera, and I was using
Zoom, so everything was too much.”

Such issues added hurdles to the data collection process for some
participants. As P4 noted, “I wanted to do more (data collection).
Sometimes after recording 4–5 videos, if we reach 3 or 4 or 5, the
app used to get stuck. So, again we had to start and again we had to
start.” On average, participants took 5–10 minutes to record one
object, including scene creation. This was shorter (2–3 minutes)
when there were no issues such as battery drainage or app errors.

5.5 Suggestions for Improvement Within the
Find My Things app

Participants shared their suggestions for improving the usability of
the FMT app. P5 found overlapping feedback (haptic, audio, Talk-
Back) overwhelming and suggested allowing users to customise
preferences. P7 wanted an in-app review system for video quality
and a “lighting clarity percentage bar.” P1 preferred having all in-
structions at the beginning, plus specific guidance for large objects.
Lastly, P3 requested more detailed feedback on object positioning:

“Totally blind people might require a few more descriptions... If the
object is only half in the frame... it would be good.”

6 Discussion
The paper presents the ORBIT-India dataset [36], the first teachable
object recognition dataset collected by individuals who are blind or
have low vision in India. The dataset consists of 105,243 images of
76 daily-use objects, contributed by 12 data collectors between July
and December 2023. We have described the dataset characteristics,
its similarities and differences with the dataset it was inspired by
(ORBIT [67]), and data collectors’ experiences with the tools and
protocol.We now discuss the challenges encountered during dataset
collection and their implications for future AI data collection in
low-resource communities. We also discuss the limitations of our
dataset collection and outline directions for future work.

6.1 Barriers in Inclusive Dataset Collection in
Low-resource Communities

Data collection in low-resource settings is shaped by unpredictable
interactions between device variability, connectivity issues, digital
literacy, and sociocultural or environmental constraints. However
such challenges are not only technical, but also structural, align-
ing with the critiques from data colonialism that highlight how
the global data practices often extract value from marginalised
communities without sharing equitable benefit or agency [23].

Access to technology shapes its use and adoption. The hardware
and resource demands of our tools effectively set eligibility bound-
aries for who can contribute their data or not. While it may seem
counter-intuitive to collect data from someone whose device may
not yet run the app (e.g., a teachable object recogniser), it is impor-
tant to include data from people of diverse backgrounds (digital
expertise and experience, gender, age, geographic and socio-cultural
background). Data feminism reminds us that design choices about
who gets to contribute to shaping technological systems are never
neutral: they reflect power, privileges, and historical inequities in
whose knowledge matters in the built systems[45]. The VizWiz
dataset collection shows that even when users’ devices produce
low-quality or unconventional images, their participation is neces-
sary to build systems that reflect real user needs [16, 32, 33].

Emergent users, a term first introduced by Devanuj and Joshi
[12], are individuals—often in the Global South—who are just be-
ginning to access modern mobile technologies. Including them in
dataset design and representation is non-negotiable, even before
tools fully support their devices. Their participation addresses rep-
resentational gaps, ensuring systems evolve alongside their users.
Supporting such contributors is key to building equitable datasets
and, by extension, equitable AI systems for the global disability com-
munity.Creation of disability centred datasets like the ORBIT and
VizWiz datasets show direct and early end user involvement crucial
in capturing authentic, diverse, and realistic real-world data.We
provide the following recommendations based on our data collec-
tion experiences for possible future data collection processes that
may not be limited to our work, like with disability community and
image datasets.

6.1.1 Overcoming network and Connectivity Issues. While internet
access in India has improved significantly in the past decade [3],
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practices like data sharing via Bluetooth remain common, espe-
cially in rural areas where this method is often more reliable (and
entirely free). To have equitable representation from rural areas,
it might be beneficial to design for such practices—e.g., offering
Bluetooth-based submission options—which can make data collec-
tion more inclusive, especially in other regions, where internet
costs remain high (e.g., $19 per month for 3GB in South Africa) [61].
Data collection entities could also consider providing community-
inclusive Wi-Fi hotspots, where people may visit to install the data
collection tools and upload their data when recorded, free of charge.
When such infrastructural and resource-related factors are over-
looked, data collection efforts risk privileging urban, wealthier, and
better-connected populations, leading to AI systems shaped by self-
selection bias, where even within under-represented groups, only
the most privileged voices are captured. Prior work such as VizWiz
underscores that connectivity-dependent workflows can systemati-
cally exclude users in low-bandwidth contexts, further emphasizing
the importance of offline or low-cost submission pathways.

6.1.2 Overcoming Device Limitations. In cases where shared hard-
ware use is permitted, it offers promise as an inclusive solution.
The StoryBank project [26, 27], for instance, deployed a walk-up-
and-use kiosk in rural India for digital storytelling. Similarly, the
Com-Me project [15] installed public tablets in rural South Africa
to support media sharing. Such models can enable inclusive partici-
pation without requiring individual device ownership.

In our own dataset collection, a continuous feedback loop with
participants helped navigate challenges around resource availabil-
ity—for instance, by providing Wi-Fi hotspots, allowing flexible
data submission timelines, and enabling low-light app notifica-
tions—however, remote data collection also meant the burden of
troubleshooting largely fell on participants. Our data collectors,
on average, had 9 ± 3.86 years of experience using smartphones
and were all familiar with object-recognition apps, as well as with
using cameras for object-recognition tasks. Not all potential partic-
ipants will have this level of digital expertise or fluency. Designing
inclusive tools requires anticipating these skill gaps and meeting
participants where they are—through thoughtful design, flexible
workflows, and responsive support. This is especially critical across
socio-economic contexts, where even small differences in resource
access can impact participation. The image datasets collected with
individuals who are blind or have low vision in past prove that
collected images may be unpredictably framed, have lighting or
quality issues, reinforcing the importance of designing workflows
that accommodate non-expert and low-resource contributors.

6.1.3 Language and Socio-Cultural Contexts . India alone has over
121 languages [1] and hundreds more dialects. People in Africa and
Asia, for instance, often speak a tribal or native mother tongue,
as well as a more widely-spoken national language, with some
understanding of neighbouring community languages, and often
some English [58, 59]. Our protocol supported Hindi and English,
which shaped the inclusivity of both the data and its labels.Data
colonialism and data feminism argues for elevating local, situated
knowledge, especially from communities whose languages, cul-
tures, and ontologies are often marginalised in global tech systems
[23, 45]. Recruiting data collectors who speak regional and diverse

languages contributes not only to greater inclusivity but also en-
hances the variety in the dataset. These participants are more likely
to interact with region-specific objects—such as local-language
newspapers, packaging, or signage—that reflect their linguistic and
cultural environments. Including such data ensures that AI systems
are trained to recognise a broader range of real-world objects, mak-
ing them more relevant and usable across different language and
cultural contexts.

6.1.4 Understanding of AI, Android Expertise, and Digital Fluency.
Another challenge in recruitment arises when working with com-
munities unfamiliar with complex AI concepts—such as teachable
object recognition datasets—where instructions require more than
just plain language translation, especially for low-literacy or less
digitally fluent emergent users. Communicating goals, instructions,
and technical requirements to non-expert users calls for thought-
ful, accessible strategies. Co-design and participatory design ap-
proaches with potential data collectors can help the researchers
design data collection protocols aligning to their understanding,
knowledge levels, and digital exposure. Access restrictions, skill
requirements, and support mechanisms shape who is able to con-
tribute to a dataset—and, in turn, shape the quality and equity of
representation within it.

6.2 Culture-Specific Perceptions of Privacy
Our dataset contained 3,999 images with personally identifiable
information (PII)—roughly 3% of the total—significantly lower than
other datasets, which have reported PII in about 10% of images. This
relatively low proportion is reflective of the caution exercised by our
data collectors. However, their interpretations of what constituted
‘private’ varied across individuals and were often shaped by socio-
cultural norms. For instance, Participant P2 recorded videos in his
family’s living room, where items such as family photographs, grad-
uation certificates, and other sensitive documents were openly dis-
played. The living room, in this context, became a space of blurred
boundaries—public enough for guests, yet deeply personal. As P2
noted, “that’s where my guests come and sit,” offering a glimpse into
a communal understanding of privacy commonly observed in many
Indian households.

In contrast, another participant chose to record exclusively in
neutral parts of their home, deliberately avoiding identifiable el-
ements while placing trust in the research team to remove any
accidental PII. These contrasting strategies underscore how deeply
privacy is embedded in cultural and spatial logics, rather than be-
ing a universal or uniform concern. Prior studies show that lack
of accessibility features related to photos or videos often lead to
people who are blind or have low vision unknowingly sharing im-
ages containing PIIs [6, 7, 17]. This can also be seen in the case of
AccessShare study, where participants upon reviewing their data
having PII agreed to share it[43].The reasons could be comfort with
sharing private information as they do not consider it private, not
understanding the risks of sharing private information with the
strangers, or submitting data, especially when all data may have
private information, for the greater good to help the community.

Understanding participants’ perceptions of privacy—and their
engagement with digital risks—is crucial, not just from an ethical
standpoint, but also because it directly impacts the data collection
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pipeline. These perceptions influence recording behaviour and con-
tribute to the downstream time, labour, and attention required to
detect, mask, and annotate each PII instance.

Kamikubo et al. developed AccessShare, a system that screens
images upon collection and provides automatic short descriptions,
including information on image quality (blurriness, hand occlusion,
object presence) and potential PIIs [41, 43]. The system enabled data
collectors who are blind or have low vision to review their own con-
tributions for teachable-object recognisers and decide whether they
wanted to share them. Despite some inaccuracies, data collectors
valued autonomy and agency over their data. Such interventions
also help reduce the manual burden on researchers responsible
for reviewing and screening data, saving considerable time and
resources.

For instance, in case of ORBIT data collection, the team out-
sourced the work of cleaning and annotating the data. In our case,
the first author undertook this work contributing a total 300 hours
on carefully inspecting, labelling, and annotating the data for the
dataset. The AccessShare study also showed that only a small num-
ber of data collectors sought assistance from sighted loved ones
when reviewing their collected data [43]. This aligns with the works
of Ahmed et al., that such reluctance may emerge from limited avail-
ability of sighted help, a desire for independence, or the wish to
maintain privacy [6, 7].

Developing automated systems capable of detecting content
in images collected by people who are blind or have low vision
presents a chicken-and-egg challenge: the very data needed to
train such systems is limited because collecting it requires those
same systems. Nonetheless, AccessShare demonstrates that even
imperfect tools can serve as meaningful first steps. In our study, par-
ticipants appreciated receiving feedback about their submissions,
which helped reinforce effective filming techniques and behaviours.
These systems, or similar interventions, could be crucial for in-
cluding individuals with lower digital expertise, thus supporting
the creation of more representative datasets. More diverse data col-
lected for teachable-object recognition can also support the training
of other AI systems to better adapt to diverse cultural contexts.

One of the ways to improve the systems like AccessShare is to
collect more ethical and disability-first ‘privacy’ datasets, like Blind-
Priv [64] and Viz-Wiz-Priv [32], that can be used to train systems to
detect objects with potential PIIs. Such datasets should be inclusive
and should include region-specific cues—such as language scripts,
household layouts, artifact styles, and visual markers of identity—to
teach models to recognise both universal and culturally specific
forms of sensitive information.

However, such systems may still require human oversight due to
cultural nuances in how privacy is understood. For example, in our
dataset, one data collector recorded videos of two trophies received
from the workplace. Although the trophies displayed the data col-
lector’s full name and workplace address, the collector viewed them
as symbols of pride and reputation and submitted the videos know-
ingly. In cases where cultural and personal perceptions of privacy
conflict with personal security, human intervention becomes es-
sential. This could be addressed by developing privacy datasets
from varied cultural contexts. It is essential for accommodating
differences in what is considered “safe” or appropriate to share. For
instance, one data collector in our study was careful to ensure that

her clothing items that were laying around were not captured in the
video. Access to automated tools that can flag such elements would
ease the workload on data collectors, reduce cognitive burden, and
increase the likelihood of participation.

6.3 Locating Privacy Within Legal, Cultural,
and Technological Contexts

Perceptions of privacy are not shaped in isolation—they are closely
linked to individual experience, cultural values, local norms, and the
broader regulatory environment. India’s evolving legal landscape
around data protection, particularly with the recent enactment
of the Digital Personal Data Protection Act, 2023 (DPDPA) [46],
brings this tension into sharper focus. While the DPDPA draws
from global frameworks such as the European Union’s General
Data Protection Regulation (GDPR) [2], it lacks the same clarity,
enforcement, and accountability, particularly around enforcement
of rights like the “Right to be Forgotten.” Such gaps affect how
individuals conceptualize digital risks and influence the support
structures they may—or may not—expect when sharing personal
information.

These systemic factors must be accounted for in the design of pri-
vacy practices and consent processes. Researchers must be cautious
not to impose Western-centric privacy models onto communities
with different lived realities. Instead, the goal should be to co-create
ethical protocols that align with local ways of living and sharing.
This includes acknowledging that privacy, in many cultures, is not
a strictly individual concern but one negotiated within families,
communities, and social networks. Addressing this knowledge gap
requires culturally grounded training and support mechanisms.
Visual storytelling, localized case studies, and co-designed exam-
ples of PII can make abstract risks more tangible and contextually
meaningful. However, this must be balanced against the cogni-
tive burden placed on participants—especially when such guidance
could inadvertently overwhelm or disengage them.

Finally, the ethical design of data collection processes must
be grounded in the values of the communities involved. This re-
quires critically rethinking our assumptions around consent, an-
notation pipelines, and what privacy protection looks like across
different contexts. Robust national policies and institutional sup-
port—through legal enforcement and public awareness—are vital in
building a privacy ecosystem that extends beyond individual effort
or technological fixes. In conclusion, while our dataset highlights
the potential for minimizing PII through culturally informed and
diligent practices (as seen in prior work like ORBIT [67]), it also sur-
faces the hidden labour and complexity involved. Future datasets,
particularly those involving blind and low-vision contributors from
diverse global settings, must prioritize inclusive, ethical, and em-
powering data practices—ensuring technological innovation does
not come at the cost of personal dignity and cultural integrity.

6.4 Limitations and Future Work
There are two main limitations of the ORBIT-India dataset. Firstly,
the dataset is smaller when compared to other visual datasets like
VizWiz and ORBIT. However small datasets can still be very useful.
First, they can be incorporated into large pre-training datasets to
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provide at least some representation of content that would other-
wise be completely absent. Even if imperfect, this gives models a bet-
ter ‘base’ understanding of those concepts. Second, small datasets
can seed the collection of larger datasets — whether through tar-
geted web-scraping or, in the future, data synthesis as generative
models improve. Finally, it is very common practice to adapt amodel
‘post-training’ via methods like parameter-efficient fine-tuning
(e.g., Low-Rank Adaptation of Large Language Models (LoRA)), in-
context learning, and/or RAG. These approaches have been shown
to be very successful with even small datasets — especially if they
are high-quality/curated datasets [56, 76]. Thus, our dataset can be
used with such post-training techniques to adapt models to this
specific content, and would be a far more efficient and cost-effective
way to inject new information than re-training from scratch.

A second limitation is that our dataset is contributed by 12 in-
dividuals who are blind or have low vision and cannot be broadly
generalised to the realities of the country’s entire population. For
example, our data collectors represent a young age group (with
the youngest being 18 and oldest 37), and 75% identified as male.
As a result, the dataset skews toward the interests, needs, and en-
vironments of younger men, and may not fairly represent older
adults or women. While the dataset does include household items
regardless of gender, other items like saris, bindis, or women’s ac-
cessories appear less frequently in the dataset. All data collectors
were urban residents and objects and realities of rural communities
are not captured in our dataset. For example, in many Indian vil-
lages, houses are traditionally constructed using locally available
materials such as mud, thatch, or brick. Some households still tra-
ditionally use items like oil-fuelled lanterns (called lalten), as they
are more environmentally friendly. Sleeping arrangements may
include cots, wooden charpai, or mats on the floor. Utensils made of
clay or earthenware are also common in some regions, particularly
in hotter climates, as they help keep water and food naturally cool.
India is a large and diverse country where culture, language, food,
and daily practices change every hundred kilometer and urbanisa-
tion in the country is influenced by global, mostly western, style
of housing, consumption, and lifestyle compared to rural regions.
The essence of this cultural and regional diversity can be better
represented when data collectors are recruited from rural commu-
nities. Intersectionality also plays a huge role: for instance, women
who are blind are less likely to have the resources to participate
in such a dataset collection. This dataset is a meaningful first step,
demonstrating feasibility and providing a foundation for scaling to
larger cohorts.

Future work in this direction should aim at creating a larger
and more representative dataset, expanding to participants com-
ing from diverse socio-economic backgrounds across gender, age,
and geographic regions—including tier-III and rural areas of the
country and beyond. To capture this diversity, the data collection
tools and protocols have to be adapted to the infrastructural and
technological realities of each region. For instance, our recruitment
relied on online channels and urban-dominant languages, which
limited participation from rural communities, who often speak re-
gional dialects and may be more effectively reached via trusted
local sources like village administrations or NGOs. Similarly, the
FMT app relied on certain functionalities like ARCode to make data
collection accessible, however this limits its usage to mid-to-high

range Android devices. Individuals that are first-time smartphone
owners and come from lower socio-economic background and/or
from rural areas tend to have lower-end Android phones with
limited functionalities. Additional support, such as internet connec-
tivity, in-person troubleshooting assistance and workshops, may
further contribute towards improving inclusivity of such protocols.
It will also be beneficial to collect more PII-focused datasets [32, 71]
for automated PII detection in collected image data, to reduce the
cognitive burden on participants.

Lastly, an exciting step forward would be to explore how well
ORBIT-trained models perform when fine-tuned or tested on our
dataset [50]. This would help quantify generalization gaps and
spur the development of domain-adaptive few-shot methods. For
instance, can a model trained on ORBIT be adapted with just a
few examples from our dataset to perform well in Indian settings?
Additionally, a comparative evaluation between ORBIT and our
ORBIT-India dataset could reveal systemic biases or assumptions
in current few-shot models. The ORBIT-India dataset could be used
as a cross-cultural generalization benchmark to evaluate how well
models trained in one domain perform in a very different one.

7 Conclusion
This paper introduced the ORBIT-India dataset—the first teachable
object recognition dataset collected by individuals who are blind
or have low vision in India. The data collection tools and protocols
are iteratively adapted to the local technological and socio-cultural
context, resulting in a dataset that reflects realistic household envi-
ronments and everyday objects in Indian settings. We demonstrated
how the data collection process was extended to the Indian context,
with tools iteratively designed and refined based on on-the-ground
experiences. We uncovered insights from both the data collected
and the data collectors’ experiences using these tools, highlight-
ing how the dataset reflects not only their lived realities but also
the broader challenges and learnings encountered throughout the
process. We also discussed the limitations of our work and pro-
posed directions for future AI dataset collection within the diverse
multicultural landscape of the Global South.

We are deeply grateful to the data collectors and visual disability
community members in India who generously contributed their
time, effort, and care for this dataset creation. The dataset stands as
a testament to their labour, insights, and collaboration, and would
not have been possible without them.
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