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Abstract

In this article we describe a novel approach to pedestrian navigation using bearing-based

haptic feedback. People are guided in the general direction of their destination via a minimal

directional cue, but additional exploration is stimulated by varying feedback based on the poten-

tial for taking alternative routes. This extreme navigation method removes the complexities of

maps and direction following, concentrating on allowing pedestrians to actively explore their

surroundings, rather than offering perfect, but passive, turn-by-turn guidance. We simulate

and build two mobile prototypes to examine the possible benefits of this approach, then further

extend its impact by considering how social media might be incorporated to provide a real-time,

dynamically-evolving map of physical locations. The successful use of our mobile prototypes

is demonstrated in a realistic field trial, and we discuss the results and interesting participant

behaviours that were recorded, validating the predictions from their earlier simulation. We

continue by simulating the use of publicly-posted status updates and pictures as a proxy for

location mapping, showing how these methods can produce comparable navigation results to

real field trials, highlighting their potential as tools for real-world social journeys.

1

http://cs.swan.ac.uk/~cssimonr/
http://cs.swan.ac.uk/~csmatt/
http://www.dcs.gla.ac.uk/~jhw/
http://www.dcs.gla.ac.uk/~rod/
http://cs.swan.ac.uk/~csparisa/
http://www.swan.ac.uk/compsci/
http://dcs.gla.ac.uk/
http://www.swansea.ac.uk/
http://www.gla.ac.uk/
mailto:cssimonr@swansea.ac.uk
mailto:csmatt@swansea.ac.uk
mailto:csparisa@swansea.ac.uk
mailto:jhw@dcs.gla.ac.uk
mailto:rod@dcs.gla.ac.uk
mailto:mads.lindborg@nokia.com


1 Introduction

Pedestrian navigation has traditionally consisted primarily of physical cues: maps, signs, com-

passes or asking strangers for directions. Since the arrival of GPS-capable mobile devices,

however, digital navigation tools have improved to simplify navigation even further. At the tap

of a button these increasingly-ubiquitous technologies instantly calculate the ideal route from A to

B, guide us with directions between waypoints, and even help us if we somehow manage to stray

from the quickest possible path. In short, we need never be lost again.

Perhaps, then, pedestrian navigation has been solved? Turn-by-turn walking directions (largely

very direct conversions of car-based navigation systems) are now widely available on many mobile

devices, and becoming ever more helpful with the addition of on-board sensors to orient a map of

our surroundings in real time. With directions always to-hand on the devices we constantly carry,

we are assured by device marketing campaigns that we now never need to worry about being lost,

taking the wrong path, or losing our bearings in an unfamiliar place. In reality, users of pedestrian

navigation systems are often completely lost, in that if their device stopped working, they would

not know where they were, or what to do next [4, 5], making the device more of a crutch they

become dependent on, rather than a liberating feature. Furthermore, such systems affect how

people learn to navigate independently [2, 19], and make them less able to guide others in the city.

Instead of enjoying their surroundings, people using current pedestrian navigation systems

are prompted to speed directly to their goal, heads-down, checking the display for the latest

instructions about where to turn next. Such systems can often remove the wonder and enchantment

of an individual’s exploration, alter their normal exploratory behaviour in a new environment, and

make them less aware of their surroundings. Our goal in this research is to remove this division of

attention between a navigation device and the real world it describes; instead we prompt people to

fuse their view of a location with the feedback given, allowing a more engaging experience. We

aim at empowering users to find their own way, and to free them from the need to constantly look

at a screen or be passive, micro-managed agents, listening to turn-by-turn instructions. We allow

them instead the flexibility to actively take control, and wander where their imagination takes

them, with no need to worry about getting back to the ‘correct’ path. The user actively requests

support from the phone when needed, giving them the reassurance that they can always find their

bearing to the goal, without having the sense that the phone is ‘directing’ them.

We envisage this extreme navigation approach not as a replacement for, but as a complement to
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current systems. In situations where quickest time or shortest path are not particularly important,

users might find it more enjoyable to turn off the demands of instruction following. Instead, we

imagine people wandering through and impulsively exploring the interesting places around them,

with occasional reassurance that they’re heading in the right direction. Consider the following

scenario, which illustrates the approach:

Mark is visiting Rome for the first time, and is looking forward to meeting some friends at a

good local restaurant. Taking out his mobile, he sees the arranged meeting place just about

2km away. It’s such a lovely spring day, so, with time to spare, he roams freely in the rough

direction of his meet-up, taking in the maze of alleys and quirky shops all around him. After

10 minutes, he scans left to right; the device vibrates to reassure him he’s still on course,

and also indicates that there are many routes to his destination. It feels good finding his own

way, so he continues to make his own choices, enjoying the area around him. A little later,

he comes to a main junction. Should he turn left or right? He’d better get this right, he

thinks. Scanning again, the vibration feedback is now more targeted, and he walks on with

confidence...

Recognising that pedestrian navigation might often be more exploratory, taking place in

semi-familiar places, in our design we remove the complexity of direction following. We have

previously investigated this low-attention method of navigation to help groups of people find their

way to a shared meeting point [39], but here we look more closely at how the technique might

work for individuals. In our earlier work pedestrians casually scanned for feedback to lead them to

a mutually-convenient meetup location – a dynamically-evolving social guide to their shared area.

In this article we consider a single person-focused approach, investigating the efficiency of simple

haptic navigation for guiding pedestrians to their goal without the need for waypoints.

A key component of our approach is a re-envisioning of the maps we use while navigating. For

many current navigation applications, one crucial requirement is a detailed map of the area, needed

in order to be able to plan routes between waypoints. We begin by considering how pedestrian

navigation might work without these maps. Indeed, while such maps are widely available for road

networks and, increasingly, pedestrianised areas, we feel our approach offers benefits in those areas

that may not be fully digitalised – consider navigation through a live music festival, wandering

in open parkland, and many places in the developing world. Our first mobile prototype–static
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feedback–offers a simple solution by providing directional assistance in the form of fixed size,

low-resolution vibrotactile feedback. Pedestrians can casually scan to discover the direction of

their destination using a handheld device, feeling feedback when they point toward their goal.

Building upon this initial design, we also consider how the maps used in current devices might

be appropriated to help users realise the potential for exploration. In our initial prototype, the

apparent width of the haptic target remains the same regardless of the navigator’s surroundings.

Our second prototype–dynamic feedback– uses map data to estimate the number of routes in

the vicinity of the user’s current location and expand or contract the size of the feedback area

accordingly. This novel feedback method helps to provide the user with some indication of the

degree of choice available when route finding.

In the final part of this article we turn to consider how it might be possible to construct ‘maps’

that represent both the exploration possible in the locations the user is navigating through, and

the experiences of others in the surrounding area. Our previous social navigation work developed

routes by incorporating the current location of a group of users navigating in the same physical

area. Here, we investigate techniques for using location data from people outside of the navigation

process. The most abundant and easily-accessible source of public geolocated media is the vast

array of social updates, pictures and videos that are continuously shared by users worldwide. By

incorporating this geotagged social content into the navigation process we allow social navigation,

helping the user navigate via a constantly-evolving social map of the places they pass through.

Using the same technique as our dynamic feedback prototype, the angular width the user senses

is constantly adjusted as they move. However, in this third design the feedback reflects the routes

possible through the social content shared in the places around them.

In the rest of this article we present these three methods for pedestrian navigation, beginning

by situating the approach alongside previous research. In Section 3 we describe the design,

implementation and a realistic simulation of our first two prototypes, continuing in Section 4

to evaluate the approach. These prototypes were first described in [31]; here we discuss their

design, development and, particularly, their simulation, in more detail. Our simulated results are

validated by those from a real-world field trial, then extended in Section 5 by simulations of three

potential social navigation methods. Finally, we draw the article to a close by discussing how these

implementations might be used as a proxy for accurate location models, concluding in Section 6

by highlighting our contributions and pointing to potential future extensions of this work.
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2 Background

It is well known that the use of mobile devices while moving can cause problems in situations

where visual attention is necessary, and pedestrian navigation is a perfect example of this type

of scenario. Seager [33] discusses many of the challenges in screen-based pedestrian navigation.

Holland et al. [13] describe potential problems and offer a solution in the form of audio cues to

guide users towards a destination. A similar approach was taken by Jones et al. [16] and Strachan

et al. [35, 40] by dynamically adapting the music that a user is listening to in order to guide them

in a certain direction. While these approaches have shown promise, related early work has found

that many users are reluctant to use headphones for this type of task [3], citing concerns about

being recognised as tourists, or a feeling of isolation from the environment. Our approach helps to

minimise these effects, using vibrotactile feedback to allow a less-restrictive interaction style.

Previous alternatives to turn-by-turn navigation include landmark-based methods such as that

described by Goodman et al. [12], who found benefits in using images of recognisable views

along a route to guide users. Krüger et al. [19] and Aslan et al. [2] discuss how users

learn routes while using mobile devices, finding that turn-by-turn systems often fail to convey

appreciation of the navigation environment to their users. Our design takes a minimal approach to

pedestrian navigation, removing turn-by-turn instructions to prompt users to explore, rather than

hurry through their surroundings.

2.1 Haptics for Navigation

Previous research has investigated the use of directional vibrotactile feedback as a navigational

guide, with vest- or belt-based systems being the most common approach. Van Erp et al. [38], for

example, studied several combinations of vibrational pulses, and were able to successfully guide

users to walk between waypoints. Pielot et al. [27] used a haptic belt with directional vibration to

help users of paper maps orient the map correctly as they walked. The belt vibrated continuously,

and users were able to incorporate this background cue into their navigation behaviour. A similar

approach was taken by Johnson and Higgins [14], applying the technique to navigation for blind

users. Their tactor belt was aimed at helping people avoid obstacles in their surroundings,

motivated in part by a desire to lessen the effect of navigation on users’ other activities. Our

systems have a similar goal: allowing interaction with a navigation device to be thought of as a

background task undertaken only when it is necessary or desirable, rather than providing feedback
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for slight path deviations or upcoming waypoints.

Many haptic navigation systems have used tactors in fairly fixed positions on the user’s body,

but handheld vibrotactile navigation has only emerged fairly recently. Lin et al. [20], for instance,

provided navigational assistance via direction-specific tactons, finding that users were quite able

to recognise the haptic cues and take appropriate paths through their environment. Strachan and

Murray-Smith [36] investigated the use of simple directional vibration similar to that used in our

systems, applying this to help with spatial target selection. Haptic target finding was studied further

by Ahmaniemi and Lantz [1], using more complex vibrotactile patterns than in [36], though no

significant improvements were found when additional cues (such as ‘close to target’) were added.

Our work builds upon these findings, and relates closely to the bearing-based feedback used in

[24]. We combine this with the low-attention feedback aims of [34], also drawing upon previous

research showing the benefits of handheld directional vibrotactile feedback while moving [29].

In addition, we investigate dynamic directional feedback, created from both physical and social

location models. Our aim is to provide a new perspective on the task of pedestrian navigation, and

demonstrate the potential of these more flexible approaches.

2.2 Social Navigation

Previous work has investigated user needs for social navigation during meetup tasks. Olofsson et

al. [26] studied requirements during music festivals, for example, and Nicolai et al. [25] explored

social location-aware systems by providing users with proximity awareness about people nearby.

In our earlier work [39] we provided low-attention navigation awareness to a group of pedestrians

walking to a mutually-agreeable centre point. In this article, however, we study social navigation

as a dynamically-evolving guide created by people who are not part of the navigation process.

Dourish and Chalmers [8] define social navigation as “an artefact of the activity of another

or a group of others,” concisely describing this extensive area of research. While much research

has concentrated on using social media to navigate digital data [23], others have explored social

aspects of physical navigation and exploration through approaches such as geolocated images [21],

collections of geotagged content [30], collocated users [37], or specific location-based applications

(GeoNotes [9], for example). More recently, these social approaches have also started to appear in

consumer-level devices. In-car GPS navigation tools now commonly incorporate live updates to

allow both official traffic news and feedback from other drivers in the nearby area. Mobile phones
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have begun to incorporate similar features, such as allowing the user to activate a live camera

display augmented with both points of interest and appropriate social data.

Karimi et al. [17] define a framework for social navigation networks, using a friend-based

system to create recommendations for places to go and routes to take. This framework was tested

in [18], allowing a groups of users to annotate locations and create personalised recommendations

for routes and destinations. In a user study, participants were positive about the utility of the

system, but the authors concede that further pedestrian path generation methods are needed. In

our social navigation design we take a different approach – rather than filtering social data within

a small group of friends, we adopt a similar technique to the serendipitous search query awareness

of [15]. Like the mobile query awareness provided by [6], our social navigation design provides

social media location awareness from public social media, using this as an ad-hoc replacement for

map data, rather than creating specific route or destination recommendations.

3 Static and Dynamic Navigation Prototypes

We created two prototypes to investigate static and dynamic approaches to handheld vibrotactile

pedestrian navigation assistance. Our systems use a simple scanning gesture to browse for

feedback, with the user holding a mobile device in-hand and feeling for navigation feedback

whenever they like.

In our prototypes, the feedback is not given in a turn-by-turn fashion; rather we use directional

vibration to indicate the bearing of the destination, and allow the user to make their own path

choices. Previous work has investigated the use of a general directional haptic cue for situations

such as bike-based tourism [28], but in our novel approach we apply the technique to navigation

while walking. We build upon our earlier work that investigated the use of handheld directional

vibration as a casual method for organising group meetups [39], extending this concept in our

second prototype to allow users to get a sense of the path choices around them. This approach, we

believe, can offer the user more freedom where appropriate, providing opportunities for off-the-

beaten-track exploration. Unlike some previous approaches ([40], for example, which provided

feedback varying as function of possible paths) we do not give any indication of the distance to the

target, focusing instead on the benefits of giving users familiar and always-available reassurance

that they are heading in the right direction.

Our first prototype–static feedback–uses a fixed angular width for the feedback given, rely-
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ing on the user to observe potential route options and make appropriate choices. The second

prototype–dynamic feedback–varies the width of the feedback area to give more information about

the user’s immediate environment (as illustrated in Fig. 1). By incorporating this extra aspect,

pedestrians are able to sense whether alternative routes are available, but are still free to pick their

own path at any point.

Figure 1: Dynamic feedback is directly related to path options. When fewer routes are available
(left) the feedback area (shown in blue) is small, expanding when there is more choice (right). The
centre of the feedback area aims directly at the goal.

3.1 Implementation

Our prototype systems were implemented using Nokia N95 mobile phones. For feedback and

device movement sensing we used the SHAKE SK6 sensor pack [40]. The SK6 provides three-

axis accelerometer, magnetometer and angular rate data, and incorporates a pager motor with

variable speed control and active braking which we used to produce vibrotactile effects. GPS

positioning was provided by the N95’s onboard receiver. For this early prototype the N95 was

worn on a lanyard around the neck, and the SK6 was held separately, attached to a dummy mobile

phone. This was a design compromise chosen to minimise cross-device sensor interference while

still providing a realistically-sized object that users could comfortably hold to feel for feedback.

The feedback used was designed based on previous research that showed that feedback can

be a function of possible paths through the environment [40], and that vibrotactile angular widths

need not be particularly small – indeed larger angular widths help to minimise user frustration,

and have surprisingly minimal effects on user performance [39]. Our systems used the same
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minimum angular width of 60◦, with the static feedback system using this at all times. The

dynamic feedback approach altered the target width based on the number of potential alternative

paths found. Pathfinding was achieved by precomputing a shortest path matrix using the Floyd-

Warshall algorithm [10] on a graph of the study area. During actual usage, potential alternative

routes were calculated by testing for paths from points in the area directly in front of the user’s

GPS trajectory. Routes that added more than 25% to the distance of the shortest path from the

user’s current location were discarded. The number of paths remaining was used to directly resize

the feedback area, but this was limited to a maximum of 120◦ to avoid the excessively long routes

that might result from edge-following behaviour.

3.2 Simulation

In previous work we have discussed the benefits of using simulations for the design and initial

testing of interactive mobile prototypes [39]. Specifically, relatively simple simulations can

allow quicker and cheaper testing and refinement of complex mobile systems, and are capable

of accurately modelling both basic user behaviours and complex external uncertainties.

The systems described here have many parameters and variable external constraints. The

angles at which feedback is produced can be altered, for example, or the GPS positional fix

quality can vary as as the environment changes. Obviously, a simulator cannot capture many

of the subtle complexities of human behaviour, but the simple navigation task involved here can

be reasonably modelled with a few assumptions. Importantly, the uncertainties in the system (for

example, inaccuracy in bearing sensing, or limited GPS resolution) can be simulated, and the

effects on navigation performance observed and quantified.

We adapted the custom-built Python simulator from [39] to model our navigation prototypes,

allowing refinement of their designs without the need for multiple field trials. Through an iterative

design and simulation process, we improved the behaviour of the dynamic prototype, arriving at

the parameters described above to give a balance of both the potential for environment exploration

and reasonable task completion times. The parameters for the simulator were estimated based on

simple assumptions about human movement and the way we expected people to use the system

(checking the heading only every 30 seconds or so, for example). The simulator parameters were

not estimated from experimental trials. Recent research ([22], for example) has built upon [39] and

investigated several possible parameters for angle size in directional vibration, helping to support
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empirically the results from these simulations.

3.2.1 Agent model

The simulator models the problem as an agent with a simple behaviour system. This agent acts

according to the following rules:

1. Walk in the current direction at a fixed rate (with some random wander)

2. Occasionally stop (according to a Poisson process), scan for the target, and then head in that

direction

3. If an obstacle is reached, turn to face the smallest angle away from the target where the

obstacle is not in the way

4. Stop when within the stopping radius of the destination

Agent actions are scheduled to happen as Poisson processes, where the average rate of actions

can be set; for example, the agent can be set to scan for the target with an expected time interval

of one minute, but with appropriate random variation. The simulator has eight configurable

parameters (excluding the definition of the obstacles in the environment). These are: GPS noise;

feedback angle width; walking rate; scanning time; walking rate; walking variation (Brownian

noise component); heading adjustment rate; and GPS update rate. Each agent has a current “true”

position, and a GPS-noise corrupted “reported” position, along with a current heading. When one

of the actions is scheduled to occur (obstacle impact or heading check), the agent pauses for a

time, chooses a new heading angle and continues in the new direction.

While obviously a simple approximation which cannot capture the richness of human be-

haviour, this model provides estimations of reasonable behavioural characteristics and is sufficient

to make informed decisions about design. Modelling the uncertainty, particularly GPS noise,

the accuracy of the bearing signal, and the impact of obstructions are what make the simulator

powerful. Environmental sources of noise are modelled as spherical Gaussian distributions, with

adjustable variance. While this is not a perfect model of the true noise sources, it is sufficient to

observe the impact. Some of the uncertainty due to latency in the feedback – which effectively

blurs the target width – is folded into the model of angular sensing accuracy. The model can be

explored interactively to check if agent behaviour seems plausible. The simulation can also be run

in a batch mode, where hundreds of repeated runs are performed and overall statistics (such as
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time to converge, average scanning time, etc.) are reported. This allows gathering of statistics on

a scale which is entirely infeasible with user trials.

We created an accurate model of the field trial environment, and used this for 500 simulated

runs of both the static and dynamic feedback prototypes between the same starting and ending

points as those used in our trial (detailed in Section 4, below). The simulator predicted mean

completion times of: 20:52 minutes (sd: 7:13) for the static system, and 20:33 minutes (sd: 7:19)

for the dynamic system. Mean distances walked were 1.32km (sd: 0.42) and 1.30km (sd: 0.42)

for the static and dynamic systems, respectively. Simulations were run with Gaussian GPS noise

(sd: 8m) and Gaussian angular noise (sd: 8◦), with agents walking at 1.0 metre per second (±0.2)

and checking for feedback every 30 seconds.

4 Field Study

We conducted a field study to investigate the systems’ effectiveness in a realistic navigation

scenario, and to validate our design simulations against the real-world results. The design of our

trial was based on methods and recommendations from previous assessments of performance with

mobile navigations devices, including both field studies (such as [11] and [41]), and laboratory

experiments (such as [32]). Our research questions were:

Viability: Can pedestrians navigate to a destination knowing only its general direction?

Freedom: Does the dynamic feedback prototype’s coupling of feedback size to path variance have

an impact on users’ exploration of their surroundings while navigating?

After an initial pilot study, 24 participants aged from 18 to 65 were recruited for individual

trials to help understand potential usage of the system. 14 participants were female, 10 were male;

13 were members of university staff, 11 were students. None of the participants worked in areas

directly related to HCI.

Before the study, each participant was randomly assigned to use one of the two prototypes, in a

between subjects design. Fixed start and end points were chosen at the edges of the approximately

0.5km2 study area, in order to give participants exposure to navigation with the system through

both urban and rural areas. The straight-line distance between start and end points was 0.77km,

and the shortest walking route (when keeping to paths) was approximately 1km. These well-

spaced points allowed us to measure participant performance at a much greater distance than that
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commonly used between turn-by-turn waypoints.

4.1 Measures

In addition to participants’ comments and opinions in interviews, and recorded observations from

the researcher running each trial, we collected detailed device logs allowing in-depth analysis of

participant behaviours against our research questions.

Viability: We measured the success of the system as the overall percentage of participants who

found their way to the end point. The viability of the system is reinforced by participant

observations and remarks, and by looking closely at walking speeds, specifically the variance

over the trial and the amount of stopping required.

Freedom: The freedom offered by the dynamic feedback prototype is measured by comparing the

variation in paths taken by participants over both systems. In addition, comparison to results from

our static feedback prototype allows a measure of the extra cost of any exploratory behaviour.

4.2 Procedure

At the start of each study session participants were met individually and led through an ethically-

reviewed consent and user study guidance process. Participants were then talked through the

concept and basic usage of the system they would be using, and given a short demonstration of the

prototype. After a brief training session (less than ½ minute per user) in which they felt example

feedback, participants were led to the pre-determined starting point on campus. When at the

starting point, they began using the system to scan for and attempt to navigate to the end point. No

description or guidance about the location of the end point was given, minimising potential effects

from participants’ prior knowledge of routes to the location. While navigating, participants were

free to take any route they wished over the entire study area, while the researcher followed. Upon

reaching the end point a short interview was conducted to gather opinions and experiences, and all

participants were rewarded with a bookstore gift voucher as a token of appreciation.

4.3 Results and Analysis

All participants successfully completed the navigation task and found the end point with only the

vibrotactile feedback to guide them. Participants using the dynamic feedback system completed

12



Distribution at P1

25% 75%

58% 42%

D
yn
.

S
ta
t.

Dynamic
Static
Shortest

Figure 2: Routes taken from points A to B by all 24 participants during the study; shortest path
overlaid. Inset: distribution between main routes. Participants feeling dynamic feedback tended
toward the main campus thoroughfare; those feeling static feedback often took less familiar routes.

the navigation task in an average time of 17:24 minutes (sd: 5:25), while those using the static

feedback took 19:02 minutes on average (sd: 5:36). The mean distances walked were 1.53km (sd:

0.39) and 1.65km (sd: 0.58) for the dynamic and static systems respectively, ranging from 0.97–

2.39km for dynamic feedback and 1.08–2.93km for static feedback. Times and distances were

not significantly different between feedback types (ANOVA, time: p = 0.5; distance: p = 0.59).

Clearly, users were able to navigate to the end point without the need for turn-by-turn guidance.

The mean times taken and distances walked are longer than those for the shortest path, but the

ranges of times, distances and routes taken (see Fig. 2) suggests that this has been as a result of the

variance in path choices.
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Figure 3: Top left: Walking speeds for each system: speeds are clearly similar. Top right: Walking
speeds for 150m segments of the routes taken: similar rates were maintained throughout the
task. Bottom: Walking speeds while the feedback was activated. Users walked and interacted
simultaneously; those feeling the dynamic feedback interacted more, proportionally.

4.3.1 Path choices and walking speeds

Fig. 2 shows the routes taken by participants using each prototype, and also the shortest path –

the likely route for a turn-by-turn navigation system. Interestingly, although both systems used the

same destination point, many participants using the dynamic feedback have tended to stick more

closely to the main thoroughfare of the university campus, while those using the static feedback

have often taken a less well-trodden route. This suggests that the varying vibration has allowed

users to combine the feedback given by the system with both the path cues in their immediate

environment and any prior knowledge of the area, while participants using the static feedback felt
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obliged to follow the target direction more closely despite the (unknown) potential for a more

appropriate route.

Using methods from [7] for gait phase analysis, we can look at participant walking behaviour

in detail. As shown in Fig. 3 (top), there is very little difference in walking speeds between systems

throughout the task, though those using the static feedback have a slight tendency to walk faster.

When looking at walking rate against the feedback given (see Fig. 3 (bottom)), we can see that

participants using the dynamic feedback have probed for feedback more of the time.

Time taken (seconds)

Distance walked (metres)

Fr
eq

u
en

cy
Fr

eq
u
en

cy

Static
Dynamic

Actual

Figure 4: Predicted times taken and distances walked for each prototype (shaded areas; distribution
after 500 runs). Actual results are shown as vertical lines. The limited pathfinding ability of the
simulated agents has caused long tails, but most actual results fall well within the range predicted
before the trial.
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4.3.2 Comparison to simulated routes

Figure 4 compares results from the simulator with those from the field study. Times taken and

distances walked in the trial are within the ranges predicted in the simulation, although in the study

participants have walked slightly faster than the 1 metre per second assumed for the simulation.

Interestingly, differences between the two prototypes in the real trial results are not present in

the simulated runs. In the real trial, participants using the dynamic feedback reached the goal faster

and walked shorter distances, on average. These differences are likely to be a result of the limited

walking behaviour model in the simulator – there are many external factors that we were unable

to model, such as the possibility that participants have some level of prior knowledge of the study

environment layout, subsequently influencing their walking behaviour. Despite this, however, the

times and distances measured in our field study still lie well within the range predicted by the

simulator, highlighting its value for predicting the effectiveness of interactive mobile navigation

systems.

4.3.3 Participant observations and feedback

Participant observations confirm a tendency to walk at a steady pace for most of their route, with

occasional pauses to check for confirmation at major path junctions. All participants except

one enjoyed using the systems, and were surprised at their effectiveness despite some initial

scepticism. Several participants remarked on the ability to “combine technology and knowledge

of the environment to pick the right path”, and that as they were in no hurry it was “good to be

able to explore”. Three participants said that they would not use haptics for navigation because

they preferred to have constant knowledge of their position and destination. The participant who

disliked using the system did not like holding the device constantly, but would have liked to repeat

the trial with the device kept in a pocket to be used for occasional route updates. Half of the

participants using the dynamic system explicitly commented that they liked the varying feedback,

finding it helpful to know when they could take a different route; this seems to be reflected in their

route choices. Most participants suggested potential use scenarios for this low-attention method

of navigation, ranging from searching for catering venues to simple, low-cost tourist guides.
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4.4 Discussion

All participants were able to find an unknown target location with only directional vibrotactile

feedback as a guide. The lack of turn-by-turn navigation guidance did not have a noticeable

effect on walking behaviour, with brief pauses to check bearings being the only times participants

stopped over the majority of routes. Users were required to choose their own route to the goal

without a map or turn-by-turn guidance, but were able to navigate without needing to stop or

backtrack unnecessarily. As can be seen in the walking data (and confirmed by participant

observations) users preferred to keep track of the target direction most of the time, but were able

to do this casually and without sacrificing attention. While the lack of waypoints might be an issue

for navigation over much larger areas, users have had no trouble selecting appropriate routes over

distances averaging at least 1.5km.

Simulations of user behaviour prior to the trial showed behaviours largely similar to those

of actual users, highlighting the benefit of simulations for evaluating mobile device usage. A

straightforward reproduction of the study area, combined with a basic model of walking behaviour

incorporating the complexities in positional and sensing hardware, has allowed accurate predic-

tions of the results of a real-world field study. Additionally, recent work ([22], for example), has

evaluated several aspects of directional vibration for navigation, helping to validate the simulations

used here.

The variation in paths between users of the two systems shows interesting behaviours around

commonly-travelled areas. We aimed to allow users more freedom in route finding while still

being able to navigate to a target, and this is evident to some extent in the range of paths taken.

Interestingly, many participants chose to follow familiar paths when given the option, though

some outliers took the opportunity to explore an area they were not familiar with. Most kept to

major paths while in a rural environment, but some (using either system) decided to take more

direct routes (over wet parkland) when possible. This is an interesting behaviour, and not an

aspect emphasised in our design process, though we suspect users might prefer actual paths when

navigating to self-selected targets. In some cases these shortcuts have caused the participant to

reach a dead end – this is an example of where our design does not offer the precision of a turn-

by-turn navigation system. However, even in these cases users have managed to find the end point

with no further assistance.

There is no statistically significant evidence of added costs in user performance while using
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variable feedback; in fact, on average, users of the dynamic system found the target more quickly

and in a shorter distance. The less-precise dynamic feedback did not adversely affect users’

navigation abilities, suggesting that this new approach to pedestrian navigation could effectively

complement existing turn-by-turn or static haptic methods.

5 Social Navigation

Social navigation most commonly refers to shared navigation through digital spaces [23]. Here,

though, we consider social navigation applied to physical spaces. While maps can offer potential

routes and pathways through a location, geolocated social data indicates positions where people

have physically been, with quantity as a simple measure of location popularity.

We considered options for taking advantage of the huge quantities of public geolocated social

media that are generated and publicly shared each day, worldwide. With the increasing exposure

of everyday experiences online, many of the most popular social networking services are adding

functionality to allow participants to pair location data with their updates. These location-based

updates range in detail from approximate city-level information to precise latitude-longitude co-

ordinates, depending on the level of privacy chosen by the poster. Crucially, a large number of the

most popular services provide public APIs that allow filtering and retrieval of these social updates

by precise location. By retrieving these located posts around a navigating user, we are able to

build on our previous social navigation work to construct a social representation of a pedestrian’s

surroundings: social navigation.

While our previous work has used navigation data from co-located users moving in coopera-

tion, our approach here incorporates the location of people external to the navigation process in

both location and, likely, time. In a similar way to [15], the thoughts and opinions of strangers who

have been (or are currently) in the same location are used to inform the user’s behaviour. However,

as in our dynamic feedback approach earlier, these shared updates are not presented directly to the

user, but instead used to inform them of the variety and diversity in their surroundings.

Naturally, the distribution of social media updates is irregular and unpredictable, often concen-

trated heavily around popular or built-up places. However, this dispersion gives the approach its

value – by constructing several unique views of publicly-shared geolocated content, we are able

to offer the possibility of custom social tours through public spaces. Choosing pictures might help

the user explore the most scenic parts of a park or nature reserve, while the use of social network
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status updates could hint at the most popular places during a live music festival. Although clearly

inferior in absolute accuracy to location maps, we believe this approach offers particular benefits

in those scenarios where maps struggle to keep up with changes in scenery (such as live events),

or when context is important and, for example, a person walking alone might take a different route

than when walking with friends.

In the following sections we demonstrate the use of content shared on Twitter and Panoramio1

for ad-hoc estimation of the route variability in a particular location, using both the extent and

distribution of social network updates as a proxy for detailed map data. As demonstrated in

our previous work [39] and in field trials of the two prototypes described earlier in this article,

using simulations for the design and evaluation of interactive mobile systems can be both accurate

and reliable. Accordingly, rather than implement physical social media navigation prototypes,

we designed simulations of several methods, allowing evaluation of their potential effectiveness

without the need for extensive user testing at this early stage.

5.1 System Designs

In keeping with the theme of our previous dynamic navigation design, the positions of social

media (instead of route possibilities) were used to predict potential paths between the user’s current

position and the goal (see Fig. 5). Paths that added more than 25% to the direct distance between

the navigator and the goal were again discarded. The number of ‘routes’ from the user’s location

through each permutation of social media items was used to expand and contract the feedback area,

using the same minimum (60◦) and maximum (120◦) angular widths as previously. In addition, we

also took into consideration the distance of the user to the geotagged content in order to prevent,

for example, content items clustered around the goal from affecting the apparent path choices

throughout the entire journey.

We designed three separate approaches, creating interfaces for each in our simulator. The

designs were chosen in order to investigate how different sources and interpretations of dynamic

social content might influence the behaviour of pedestrian navigators, helping them explore

particular views of their surroundings. Our three designs were:

Nearby Social Media: Our first design uses the public Twitter API to retrieve status updates

posted in the area between the user and their goal. Due to a lack of sufficient realtime social
1http://twitter.com • http://panoramio.com
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Figure 5: Our social navigation approach links shared geotagged data to potential route options.
When little or no content is available (left) the feedback area (shown in blue) is small, aiming
directly at the goal as in our earlier prototypes. When more content is available (right), the
feedback area expands to indicate the choice available.

network data in the study area, however, we collected an aggregated record of Twitter posts over a

two-week period to give a more accurate picture of the spread of social updates in the area.

Social Media Hotspots: For the second design we take the same aggregated Twitter data to

estimate route possibilities ahead of the user. However, in this design we group results into hotspots

based on the quantity of updates in a single location. Areas with at least three updates within 100m

are considered a cluster; those with fewer are ignored. Using clustered results, rather than every

update available, allows us to investigate how the features of the navigation area–in this case,

popularity–might be used to aid navigation.

Geolocated Images: Our third design uses the Panoramio API to retrieve images in the user’s

vicinity, rather than social updates, using these in the same way to adjust the width of the feedback

area. As geolocated images shared on Panoramio are less time-dependent than Twitter updates,

there is no need to collect images over a longer period of time; instead, we retrieve images when

needed, simulating the possible operation mode of a real-world system.

5.2 Simulation Results and Analysis

500 iterations of each of our designs were simulated using the same parameters as used for our

initial prototypes (see Section 3.2). Although previous results suggested that the simulated walking

speed chosen was slightly lower than pedestrians’ actual speed (when compared to real-world
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walking data from the trial), we chose to keep the same 1.0 metre per second (±0.2) to allow

comparison between results from both simulations.

System Mean time taken (minutes) Distance walked (km)
Nearby Social Media 21:22 (sd: 9:11) 1.36 (sd: 0.54)

Social Media Hotspots 20:09 (sd: 7:01) 1.29 (sd: 0.40)
Geolocated Images 20:48 (sd: 7:38) 1.34 (sd: 0.45)

Table 1: Simulated results for times taken and distances walked for each of the social navigation
designs.

Social media
Hotspots
Images

Figure 6: Simulated social navigation. Right: the model of the study area used for simulation,
with social media positions highlighted. Inset: routes taken by 500 simulated agents for each
social navigation method. When using the position of images to adjust the feedback, more diverse
paths result (upper left).

Table 1 shows the resulting times taken and distances walked for each of our designs. When

comparing with the simulations of our initial prototypes, it is clear that behaviours are similar,

indicating that this simple use of geolocated social media updates might be a viable source of

‘map’ data, especially when location models are not available.

Differences in navigation behaviours are evident when we look in detail at the routes taken by

simulated users. Figure 6 shows the paths taken by simulated agents for each social navigation
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method. When comparing routes in the built-up area there are few variations between the three

designs. However, routes taken in open parkland are clearly more widely distributed. While both

clustered and unclustered social media updates have prompted agents to take largely similar routes,

the large quantity of images in the open area (resulting in a larger feedback width) seems to have

encouraged more variety in navigation.

5.3 Discussion

The use of public social media updates and shared images shows potential for allowing social

navigation of pedestrianised areas, as demonstrated in multiple simulations. The results from

simulations of socially-influenced dynamic navigation are comparable with those for route-based

dynamic navigation, which themselves are comparable to the results from a real-world field study.

Looking more closely at the simulation results, interesting behaviours are evident when

considering the source of the geolocated data. In the trial area chosen for our simulation, Twitter

postings are most common around built-up areas, while Panoramio images are more widespread in

the surrounding parkland. The spread of content, particularly in the open area, seems to have led to

more diverse routes. Although this is perhaps a predictable result, it also hints at the potential for

automatic off-the-beaten-track tours of both urban and rural areas, augmented with appropriate

social media service data, but with no need for manual route generation. Indeed, while our

socially-influenced navigation designs are, of course, simplistic methods for estimation of route

variation and location popularity, it is relatively easy to create custom views of this content, closely

tailored to particular user or organisational needs.

Although in these simulations we used aggregated data, realtime social media retrieval is

possible in many of the most widely-shared locations, such as busy cities or live events. Indeed,

where our approach offers most benefits is in its direct transfer of the social popularity of an area to

the device of a pedestrian navigating through it, regardless of the quantity of updates that are being

posted. Simple modifications to our methods could use the area maximum to calibrate the local

quantity of social updates, providing an instant picture of currently evolving events, and helping

to alert users to the possibilities around them.
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6 Conclusions

In this article we began by exploring and evaluating the application of active, bearing-based, low-

resolution haptic feedback to real-world navigation. The promising results show potential for

this type of system in the wild. In our trials, pedestrians using a minimal directional vibrotactile

cue successfully navigated to an unknown target while dealing with the complexities inherent in

pedestrian navigation. Users were able to maintain a steady walking pace throughout the trial,

with negligible affects on their normal behaviour.

Results from our static prototype using fixed-size vibrotactile feedback support those of a

similar system [39], and those from a more advanced prototype show the benefits of providing

users with alternative path awareness via simple changes to angular feedback. Extending this by

simulating the use of geolocated public and social network data as a proxy for route and obstacle

models, we have begun to investigate how the use of publicly-shared content could allow dynamic

navigation personalised to particular needs via a constantly-evolving social map.

Future extensions of this work could look more closely at how these social ‘maps’ might

be created, evaluating on a larger scale using realtime social data. Extending this further,

incorporation of social data into a real prototype, in conjunction with the dynamic route techniques

used in our initial designs, could form the basis for a class of navigation device offering users a

choice between the most appropriate navigation methods, allowing exploration if desirable, or

waypoint-based shortest-path navigation where necessary.
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[26] S. Olofsson, V. Carlsson, and J. Sjölander. The friend locator: supporting visitors at large-
scale events. Personal and Ubiquitous Computing, 10(2-3):84–89, 2006.

[27] M. Pielot, N. Henze, and S. Boll. Supporting map-based wayfinding with tactile cues. In
Proc. MobileHCI ‘09, pages 170–179. ACM, 2009.

[28] B. Poppinga, M. Pielot, and S. Boll. Tacticycle: a tactile display for supporting tourists on a
bicycle trip. In Proc. MobileHCI ‘09, pages 1–4. ACM, 2009.

[29] S. Robinson, P. Eslambolchilar, and M. Jones. Evaluating haptics for information discovery
while walking. In Proc. HCI ‘09, pages 93–102. BCS, 2009.

[30] S. Robinson, P. Eslambolchilar, and M. Jones. Sweep-Shake: Finding digital resources in
physical environments. In Proc. MobileHCI ‘09, pages 85–94. ACM, 2009.

25



[31] S. Robinson, M. Jones, P. Eslambolchilar, R. Murray-Smith, and M. Lindborg. “I did it
my way”: moving away from the tyranny of turn-by-turn pedestrian navigation. In Proc.
MobileHCI ‘10, pages 341–344. ACM, 2010.
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